Chapter 3

Wave-Particle Correlation in the
Auroral Ionosphere: CHARM-II

3.1 Introduction

Langmuir waves, also known as electron plasma waves, are one of the most fundamental
properties of a plasma, having been first observed in discharge plasmas in the early days of
plasma physics (Langmuir 1928). They result from the interaction of electron beams with
plasmas and hence are ubiquitous in space plasmas, including, for example, the solar wind,
where they generate radio bursts (Lin et al. 1981), and planetary foreshocks ( Gurnett et al.
1981; Filbert and Kellogg 1979) and auroral ionospheres (Kintner et al. 1995; Boehm 1987,
McAdams 1999; Samara 2005), where they mediate energy transfer between the beam and
thermal plasmas. Langmuir waves can generate nonlinear structures of fundamental interest
to plasma physics, as well as linear eigenmode effects in inhomogeneous plasmas (McAdams
et al. 2000; Ergun et al. 2008). Due to their significance and abundance in the space envi-
ronment, Langmuir waves are a subject of current study; particularly with regard to their
eigenmode structures (Malaspina et al. 2012), three-dimensional effects (Malaspina and Er-
gun 2008; Dombrowski et al. 2012), and wave-particle correlations (Ergun et al. 1991b,a;
Muschietti et al. 1994; Kletzing et al. 2005).

Particle correlation experiments have proven to be an effective way to probe wave-particle
interaction physics in space plasmas. A detailed theory of expected results from such in-
struments regarding Langmuir waves is given by Kletzing and Muschietti (2006). The phase
bunching of the electrons in the field of the wave can be considered as a superposition of
two components, a ‘resistive’ component which is in phase with the wave electric field and
represents energy transfer either from wave to particles or vice versa, and a ‘reactive’ compo-
nent which is in quadrature phase with the wave field and is a signature of electrons trapped
in the wave. An early version flown on a sounding rocket in auroral plasma determined a
strong correlation between beam electrons and Langmuir/upper hybrid wave electric fields
over a several hundred second interval (Gough et al. 1990). A wave particle correlation
experiment was flown on the Freja spacecraft (Boehm et al. 1994). Ergun et al. (1998) flew
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Figure 3.1: GOES magnetometer data for 15-18 February 2010. The CHARM-II launch
occurred at 9:49 UT on the 16th, motivated by the preceding steep ~ 20 n'T bay in the field.

a wave-particle correlator on an auroral rocket. The design was very similar to the instru-
ment described below, except that the wave period was divided into only four phase bins
rather than sixteen; the experiment revealed evidence of wave-particle interactions but could
not resolve resistive versus reactive components. Kletzing et al. (2005) reports results from
an instrument nearly identical to the one described below, launched into nighttime aurora.
For various reasons, the experiment measured correlations associated with a relatively small
number of the most intense Langmuir waves encountered, but the results gave a strong
indication of wave trapping of the bunched electrons in those examples.

The success of previous wave-particle correlator experiments inspired a series of rocket
experiments denoted the Correlation of High-Frequency and Auroral Roar Measurements
(CHARM). The first CHARM launch experienced a payload system failure that precluded
any correlator data-taking. A re-flight, CHARM-II, was launched from the Poker Flat Re-
search Range near Fairbanks, AK, at 9:49 UT/22:46 MLT on 16 February 2010, reaching an
apogee of 802 km. The launch, shown in Figure 3.2, was into an active substorm expansion
phase, characterized by a 20 nT bay in the H-component of the magnetic field observed by
GOES 11, as seen in Figure 3.1. The payload carried a Dartmouth High-Frequency Experi-
ment and University of lowa Correlator, as well as a number of other primary and contextual

instruments. One particularly intense event encountered was reported on by Kletzing et al.
(2011).

This work presents a comprehensive investigation of the entire wave-particle correlator data
set from the CHARM-II mission. Section 3.2 covers the instruments which make up the
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Figure 3.2: A photo of the CHARM-II launch.
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Correlator system, and the form of the returned raw data. Section 3.3 presents the meth-
ods used to identify significant correlation events, a measure which characterizes individual
events, several contrasting events from the final set, and observations regarding the set as
whole. Section 3.4 summarizes these results and offers two theories developed to explain the
observations. Finally, Section 3.5 develops a numerical test-particle simulation to test the
plausibility of these theories.

3.2 Instrumentation

Accurate, in-situ correlation of Langmuir waves and electrons requires three primary pieces:
a wave instrument covering the range of frequencies in which Langmuir waves are expected,
high-speed particle detectors at a range of potentially resonant energies, and the correlation
hardware itself, which processes these data streams, and reduces and returns the desired
statistics.

The Dartmouth High-Frequency Experiment (HFE) detects the potential difference between
two 2.5 cm spherical probes, separated by 30 cm along the payload’s spin axis. This AV
signal provides an estimate of the the axial component of the electric-field, which is mainly
parallel to the ambient magnetic field, since the payload is kept field-aligned to within
~ 10° by an attitude control (ACS) system. Active preamplifiers inside each spherical probe
assure that the antenna functions as a double-probe over the entire 0-5 MHz frequency
range. The signal is band-pass filtered to a 100 kHz to 5 MHz band, and regulated by an
Automatic Gain Control (AGC) system to enhance the dynamic range. The AGC control
signal is sampled onboard at 20 kHz and telemetered with other digital data. The regulated
HF signal directly modulates a 5 MHz-bandwidth S-band transmitter, and the resulting
waveform is continuously digitized at the ground telemetry station at 10 MHz, with 12-bit
resolution. This instrument is the latest iteration of a design which has flown on numerous
other rocket campaigns in both E| and E configurations, including HIBAR (Samara et al.
2004), PHAZE II (McAdams et al. 1998), SIERRA, RACE (Samara and LaBelle 2006), and
ACES (Kaeppler et al. 2011).

The University of lowa Wave-Particle Correlator similarly has heritage on numerous sounding
rocket missions, including RACE and CHARM, and is described in detail by Kletzing et al.
(2005). The Correlator takes an input waveform from the HFE, and uses it to control a
phase-locked loop (PLL) circuit running at 16 times the frequency. The PLL phase-locks
onto the frequency of the highest-amplitude component of the incoming wave, and restores
to baseline, maintaining a 50% duty cycle. In the case of the HFE signal, the waveform
is strongly dominated by the component at the Langmuir frequency when plasma waves
are unstable. Under this condition, the PLL produces a clean, square-wave version of the
Langmuir wave. This wave is then divided into 16 bins along its phase, and incoming counts
from each of four detectors are sorted into these bins during an integration period—1 ms in
the CHARM 2 case—corresponding to hundreds of wave periods per timeslice.

For the CHARM-II mission, two correlators were flown, each receiving particle data from
four ‘bagel” particle detectors. These detectors, named for the baked goods they resemble,
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Figure 3.3: The energies of the eight ‘bagel’ particle detectors.

have energy acceptance ranges of 10%, and are characterized by a large geometric factor,
as required for correlation with high-frequency waves (Kletzing and Muschietti 2006). The
detectors are aligned with the rocket’s spin axis, with a 10°-wide field of view, and thus are
always observing the field-aligned component of incoming particles. The bagel detectors were
tuned to logarithmically spaced energy levels ranging from 200 to 1050 eV (see Figure 3.3).

An additional contextual instrument of interest is the Electrostatic Electron Pitch Angle
Analyzer (EEPAA), a ‘top-hat’ style detector which counts electrons, sorted into 15°-wide
pitch angle bins and 47 logarithmically spaced energy bins from 15 eV to 15.5 keV, with a
50 ms integration time.

3.3 Data Presentation

Figure 3.4 shows a summary plot of the active period of the CHARM-II flight, with both
time after launch and altitude on the x-axis. On top is a spectrogram of EEPAA data,
with energy on the y-axis, and the log of differential flux as color intensity. Middle is an
HFE spectrogram, with frequency on the y-axis, and color following wave power in decibels.
Finally, the bottom is a plot of log, of total counts among all eight Bagels. In the EEPAA
data, an inverted-V structure is clear from approximately 610 to 660 s, with a more tenuous
one from 500 to 560 s. The upper cutoff to noise which is near 500 kHz on the left of the HFE
panel is interpreted as the Langmuir frequency ®,, which acts as an upper bound to whistler
modes in ‘underdense’ plasmas, where ®, is less than the cyclotron frequency ®.. From this,
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Figure 3.4: A summary plot of the active period of the CHARM-II flight. Both time after
launch and altitude are shown on the x-axis. Top is a spectrogram of EEPAA particle data,
with energy on the y-axis, and logy, of the differential flux [N * eV/(cm? * ster * s * V)]
as color intensity. Middle is an HFE spectrogram, with frequency on the y-axis, and color
following wave power in decibels. Bottom is a plot of log;y of the total counts among all
eight Bagels detectors. Note a clear inverted-V structure at 610 to 660 s, and a more tenuous
one from 500 to 560 s. The upper cutoff to noise near 500 kHz on the left of the HFE panel
is interpreted as the Langmuir frequency ,.

it is clear that the Langmuir frequency is much lower than the Upper-Hybrid Frequency
(~ 1.4 MHz), and so easily selected for despite variance in the rocket’s alignment parallel to
the magnetic field. Given the bagel energy range it can also be deduced that the wavelengths
in question will range from approximately 10 to 60 meters. Finally, it is clear that there are
many instances where increased particle counts are accompanied by wave activity near ®,.
The activity near 650 to 660s was a particularly powerful event which saturated all onboard
electric-field instruments at its peak, though the HFE data (and thus the Correlator) was
only unusable for a few milliseconds. The peak Langmuir-wave electric-field intensity was
estimated between 1 to 3 V/m, with the Langmuir frequency near 350 kHz.

The Correlator system returned approximately 489 seconds of valid raw data, providing a
matrix with counts s(z, p,E) at each of 488,869 timeslices (), 16 phase bins (p =0...15), and
8 energy levels (E = 1...8). While the phase between particles and the input waveform varies
based on frequency, and due to daisy chaining of the HFE signal between the two Correlators,
a first step taken to aid comparability of timeslices is to shift all bins to the same baseline,
based on the recorded Correlator frequency. While the most direct way of looking at this
data might be to display raw counts vs. phase and time, it is generally more edifying to
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Figure 3.5: An example plot showing (left) the Poisson z-scores (G) vs. phase and time
for 101 ms of CHARM-II Correlator data. Z-score from -5 to 5 is shown as blue-to-red color
scale, electric field phase is on the y-axis, and time (in relative ms) on the x-axis. Note that
while a high-|c|, multi-timeslice event is clearly visible in the middle timeslices, many more
timeslices are insignificant. In the left line plot, the ¢ values for the central timeslice are
shown, along with the base (unity amplitude) functions for an I/Q Resistive/Reactive fit,
while in the right line plot they are shown with the fit amplitudes and their sum. The fit is
reasonable, as shown by the r? value.

examine the Poisson z-score for the data,

s(t,p,E)—5(t,E)
5(t,E)

o(t,p,E)=

Y

where § is the mean particle count of the timeslice, § = %Zps(t, p,E). This is a measure of
particle over- or under-density in a given bin, with respect to the mean for that timeslice.
This analysis yields plots as in Figure 3.5 (left), showing z-scores for 101 timeslices, with
time on the x-axis, electric field wave phase on the y-axis (with each timeslice shifted such
that the zero phases are aligned), and z-score shown as color.

While Figure 3.5 shows significant timeslices, it also shows large regions of low significance
and noise. Likewise, perusal of the complete set of timeslices, F, makes clear that many
timeslices can be discarded due to a lack of significance and/or natural and instrumental
interference, and indeed each timeslice can be classified by Correlator telemetry as ‘locked’
or not, and less than 15% of the data set has both Correlators locked. In addition, a timeslice
cannot be considered reliable merely from the presence of a lock state at that timeslice, and
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this says nothing about the presence of interesting activity at that time. With so much
data, manual inspection was not a practical or desirable method to identify reliable lock or
significance, so an automated algorithm for event identification was developed.

The reduction analysis is motivated by an expectation of how significant wave-particle corre-
lations will manifest themselves in the data: as a sine wave in the phase bins, with a quarter
of the bins having a statistical excess of counts, and a quarter having a deficit. The pattern
arises because of the bunching of the particles in the electric field of the Langmuir waves to
which the PLL is locked.

The first step towards reduction of the Correlator data to identify discrete ‘events’ is, as
shown in Figure 3.6, re-binning the 16 raw data phase bins p (orange) into four reduced
phase bins p’ (color coded by p'),

s'(t,p',E) = Z s(t,4p’ +n,E),
n=0...3

in order to emphasize the expected pattern of a quarter of the bins having over and under-
dense counts. The re-binning was done four times (¢ = 1...4, depicted as individual columns
of p’ bins), shifted by one raw bin for each, to cover all possible patterns that might result
from a wave-particle correlation event,

sy(t,p/ E) = ;SS(t74p'+n+q,E),

and the z-score,
/ / P
/ ! S(l‘7p,E)—S
o,t,pE)=—""F"<—,
4(t:p,E) 7

was then calculated for each of these reduced timeslices.

To account for events which span multiple timeslices, two ‘doublet’ and one ‘triplet’ sets were
constructed at each timeslice, acting as additional arrays of timeslices (the large divisions in
Figure 3.6). For these, the means and the counts in each reduced phrase bin were integrated
in time over the two or three raw timeslices, with the doublet sets defined as

s;’tzb(t,p',E) = Z s;(t,p/7E) and slq’lzf(t,p',E) = Z s;(t,p/,E),
T=t—1t T=tt+1
and the triplet
S/q,z3(t;P/7E) = s;(tvp/aE)7
T=t—1t1+1

i.e. the doublets integrate either the timeslice prior or after, and the triplet both. All three
sets then have their associated Gi]ﬂb’ G/qﬂ 7 and G,,3- Thus, the process yields four total
o’ arrays over the four g values, times four timeslice arrays (singlet, doublets, triplet), or
sixteen total arrays.

Finally, as a criterion to identify timeslices with interesting events, we find the global min-
imum and maximum 6’ over the sixteen arrays at each timeslice. The difference between
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Figure 3.6: A map of the rebinning done at each timeslice to the raw correlator counts.
Each large group is a time integration (singlet, doublets, triplet), and each of those contains

four shifted rebinnings from the original 16 correlator bins of s(¢, p, E) (shown in orange), to
the 4 bins of s (¢,p’,E) (shown in other colors, grouped by p').
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that min and max, A, is then a scalar measure of how well a given timeslice matches the
expected signature of a wave-particle correlation event.

Initially, a simple global threshold was used to find potential events, resulting in hundreds
of identified timeslices; however, thorough investigation of these revealed many false pos-
itives among these sets, including many events which were disqualified after examination
of diagnostic and contextual data. Figure 3.7 shows the two major factors which lead to
disqualifying timeslices. In the second plot from the bottom, a powerful interfering signal
can be seen in the raw HFE waveform data, at a cadence of about 15 us. This signal, origi-
nating on the rocket payload, is frequently seen in the HFE data throughout the flight, and
in some cases is the highest-amplitude component of the waveform. While the Correlator
filters out such a low frequency, its presence is often correlated with the second disqualifying
factor: a dubious recorded PLL lock frequency. Visible as the solid white line overlaying the
HFE spectrogram in the bottom plot, the lock frequency can either be unstable (i.e. not
properly locked), or set to unrealistically high or low values compared to by-eye evaluation
of the Langmuir cutoff (dashed black overlaying line). In either case, this drastically reduces
confidence in the correlator phase binning correctness, and motivates the discarding of such
events.

The large number of false identifications in the initial run also revealed that the A-threshold
needs to be different for each bagel detector. With these issues in mind, the event identi-
fication algorithm was altered to iteratively optimize the A threshold for each bagel. Sub-
sequently, manual screening was applied based on the considerations above. The 820 and
1050 eV bagels had no qualifying timeslices. Figure 3.8 shows an overview of the final set
S of thresholded, hand-screened events, as x-marks at a given bagel and time, overlaid on a
20-bin histogram. From the histogram it is clear that majority of the events are in a tight
cluster near 652 seconds, coincident with the strong event at the end of the major inverted-V
structure seen in Figure 3.4. Two longer clusters of events are centered near 490 and 610
seconds. The per-bagel set sizes are shown in the table inset in the upper left of Figure 3.8,
showing that the majority of the events were at 260 and 630 eV, with 12 and 23 events,
respectively.

Linear analysis of the interactions of Langmuir wave packets with electrons has shown that
the perturbation of the electron distribution function can be broken into two components:
the ‘resistive’ component of trapped particles which oscillate in-phase with the electric field
of the Langmuir wave, or 180 degrees out of phase, and the ‘reactive’ component which
oscillate 90 or 270 degrees out of phase (Kletzing and Muschietti 2006). A strong resistive
component is an indicator of wave-particle energy exchange, leading to wave growth or
damping, while the reactive phase is associated with particle trapping. The summation of
these two components will tend to have a sinusoidal form when either component shows
significant activity, and it is this form that the event-identification method focused on.

To look at the Correlator data in a comparable manner, we fit the correlator timeslices to a
quadrature function vs. bin number p,

—Isin ((p—Po) *g) —Qcos <(p_p0) * g)
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Figure 3.7: An example of plots used to hand-screen events. From the top, the plots show
max (o) and min(c), a counts vs bagel & time spectrogram, the logarithm of raw counts for
a single bagel (with PLL lock/no-lock status displayed at the bottom, as an X for ‘lock’),
two timescales of raw HFE waveforms, and an HFE spectrogram with PLL lock frequency
(white, solid) and hand-picked Langmuir frequency (black, dashed) overlaid. This event was
discarded because it shows both a wildly fluctuating lock frequency with only sporadic ‘lock’,
and strong periodic interference of unknown origin at approximately 15 us cadence.
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Figure 3.8: An overview of the final event set S vs. time for the whole flight, with the
per-bagel totals in the table inset top left. Individual events are displayed as x-marks on
lines corresponding to bagels on the left vertical axis. Overlaid on this is a histogram of
events vs. time, corresponding to event/bin counts on the right vertical axis.
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Figure 3.9: On the left, for each bagel, the ratio of (\/I? + 0?)s/{\/I? + 0?), showing that
the events in S show significantly more reactive/resistive activity than seen in the general

flight. On the right, a plot showing the resistive/reactive power ratios, as log;, |I/Q|, for all
of S, showing some variance, and resistive activity in a majority of events.

optimizing I and Q to best fit the z-scores. The negative signs and pg are determined by
calibration data relating the electric-field phase to the bins. After performing this type
of fit on all timeslices, the coefficients I and Q are then magnitudes of the In-phase and
Quadrature signals, i.e. the resistive and reactive linear components. An example set of fits
are shown in the line plots on the right of Figure 3.5, with bins on the y-axis (aligned to
the left 6 plot)—in both line plots, the black line is the ¢ values for the center timeslice.
In the left plot, the solid blue line is the calibrated electric field, corresponding to I, the
resistive component, and the dashed red line is reactive Q component. The right plot shows
fitted forms, with blue and red the fitted, separate I and Q, and the dot-dashed magenta line
their sum (i.e. the actual fit function). For this timeslice, the r? goodness-of-fit is ~ 0.906,
showing a reasonable fit, and with I ~ 0.3 and Q ~ —3.1 this event appears to be dominated
by the reactive component.

Figure 3.9 shows diagnostics of this fitting. The plot on the left has the per-bagel ratios of
the mean magnitudes I and Q when taken over only S, compared to the mean magnitude for
all of F. From this it’s clear that this form of analysis does a reasonable job of characterizing
events, though it is worth noting that it yields enough false positives and negatives to make
it less useful than the above-outlined method for event identification. The right plot shows
the log of the magnitude of the resistive-to-reactive power ratio, logo|I/Q|, for S, revealing
significant variance, and that a majority of events are more resistive.

Figure 3.10 displays several events of interest from S. Each shows, from the top, 1 second of
contextual data from the EEPAA, a spectrogram of the total counts of each bagel vs. bagel
energy, the values of I, Q, and \/I?+ 02, and 6 vs. wave phase.

Considering the top left stack of Figure 3.10, which shows data from an event identified in
the 260 eV bagel’s data, we see some evidence of higher-energy beams in the EEPAA data
leading up to the event, but nothing significant during it. The bagel spectrogram shows

43



Bagel 2 (260 eV), Event 4 (607.203 s) Bagel 2 (260 eV), Event 12 (718.274 s)

Energy [eV]
Energy [eV]

[ [

S S

T =

> >

i -
=] =)
@ Q
ke =
2 3
g £
& = ! i = =y BT 5 o - - -5

270° = | | - 270 | i
| | 1 1 | | || | o . 1 1 | r | 1 |
607.185 607.19 607.195 607.2 607.205 607.21 607.215  607.22 718255 718.26 718.265 718.27 718.275 718.28 718.285 718.29
time [s] time [s]
Bagel 3 (320 eV), Event 3 (596.234 s) Bagel 6 (630 eV), Event 11 (652.845 s)
[l EEPAA 1-second Context \og mdF

s s

£103’ )

8 i .;-u: g

T es28450

Bagel Spectrogram

3
8
S

counts

800
600
400
200

counts

@
8
3

Energy [eV]
Iy
8
Energy [eV]
o
8

[ [}
] ] s
s s e
= =
[ 4 C-25-
e ey ——
0 —. 4 05’7* |
% ok i - ‘ r - ’ I 90“‘7
k=} . | kA
° - = m = o > ‘
@ 180° | = & 180° -
T » = - T - -
* 270° - - ® 270°}» | N
Y pgels gl e el el ey
596.215 596.22 596.225 596.23 596.235 596.24 596.245 596.25 652.825 652.83 652.835 652.84 652.845 652.85 652.855 652.86
time [s] time [s]

Figure 3.10: Four example events from the final, A-thresholded, hand-screened set S,
with 1 second of EEPAA /top-hat particle detector data on top, for context, followed by a
spectrogram of bagel total counts vs. energy, a line plot of reactive/resistive fit values, and
a 0 vs. wave phase plot. Note the presence of multi-timeslice events in the ¢ data, as well
as short-lived narrow-band beam features in the bagel spectrogram, the presence of different
‘red over blue’ and ‘blue over red’ regions in close temporal proximity, and the behavior of
I and Q during these events.
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sporadic, short-timescale (2-5 ms) beams in this bagel alone. The central timeslice in the ¢
plot is the event which passed the thresholding and hand-screening, identifiable as a vertical
bar with strong blue bins in the top half, and strong red bins in the bottom half, showing
the characteristics which were selected for by the thresholding process. There are several
other timeslices around this event which show similar signals, or signals with red bins over
blue bins, and it is clear that the resistive component of our I/Q fit is differentiating between
the red-over-blue and blue-over-red cases. It also appears that the stronger beams show a
relation to I, with negative-I events preceding beams, and positive-I following.

In the other plots of Figure 3.10, we see that while there are several cases of timewise-longer
events, the majority are single-timeslice (1 ms) events as in the top left, a trend that holds
throughout S. The top-right stack shows extremely low counts on the EEPAA for unknown
reasons. While only the lower-right stack shows a clearly distinct beam, the pattern does
appear to hold that a negative I comes before or during a density increase, while a positive
I correlates with a density decrease.

Figure 3.11 highlights the event previously presented by Kletzing et al. (2011), which covers a
larger time and energy range. This figure shows the same parameters as those in Figure 3.10,
but 1/Q and o plots are shown for the 200 to 630 eV bagels. The EEPAA data shows
clear evidence of a dispersive beam appearing at or slightly before this event, lasting for
approximately 200 ms, and the bagel spectrogram and ¢ plots also appear to show this at
finer timescales. For this event, both I and Q show strong responses, and I appears to show
the same association with the density gradient at a given bagel.

Finally, Figure 3.12 shows a set of events which take place over a similar time scale to those in
Figure 3.11. Evidence for dispersion is less clear here, especially given the large gap between
the 260 eV and 630 eV bagels in which events are visible. However, in each of these examples
I displays the same relation to the beam as observed in Figures 3.10 and 3.11; that is, that
a negative [ is associated with a density increase, and vice versa.

Figure 3.13 shows scatter plots of I and Q values versus two selected parameters, the temporal
gradient of the electron beam flux Vnpg, inferred from the bagel detectors (upper row), and the
temporal gradient in the RMS HFE waveform V < w > (lower row). The points are colored
according to their r> goodness-of-fit value from the reactive/resistive fitting. The upper left
panel demonstrates from this statistical approach the correlation between the I value and the
beam gradient which has been illustrated by multiple examples in Figures 3.10 and 3.12. A
clear trend is evident whereby negative I values correspond to positive beam flux gradients,
and vice versa. A linear regression to these points returns a t-statistic value of -6.97 with a
p-value of 4 x 1077, The other panels of Figure 3.13 show that there is no pattern evident
between the Q value and Vng, or between the I or Q values and V <w >. Linear regressions of
these sets all have small t-statistics, and p-values > 0.15, strongly suggesting that the I-Vnp
relationship is the only significant one of those examined. Table 3.1 summarizes additional
statistical tests performed on the data, showing that a Kolmogorov-Smirnov test finds a
significant difference between the Vng < 0 and Vng > 0 distributions of I, and that I and
Vnpg are the only significantly correlated measures.

Additional by-eye comparisons were made between the I/Q responses and high-cadence
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Figure 3.11: A single-event summary, showing bagel spectrogram (top left), EEPAA /top
hat particle detector context (top right), and I/Q values (left column) and z-scores (right
column) for each bagel. Note clear evidence of a dispersive beam passing through the 390

to 260 eV energy range, and the strong response in I and Q.

Table 3.1
STATISTICAL TESTS ON THE FIGURE 3.13 SCATTER PLOTS.

I-Vng 0O-Vnp I-V<w> O-V<w>

s p s p s p s p
Lin Regression -6.97 4.0x107% 226 0.027 -0.36 0.72 1.27 0.21
K-S Test 1 28x1078 0 0.23 0 0.54 0 0.36
X-Correlation -0.68 7.8x107° 0.24 0.062 -0.05 0.69 0.19 0.15

These statistics all evaluate relations from I and Q to Vng and V <w >. The ‘s’
heading is general, referring to the significant output of the given test: from top to
bottom, the t-statistic, null-hypothesis rejection, and correlation coefficient.

In all tests, note the extremely low p-value of the I-Vng relation, compared to the
others.
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Figure 3.12: A single-event summary, bagel spectrogram (top left), EEPAA /top hat par-
ticle detector context (top right), and I/Q values (left column) and z-scores (right column)
for each bagel. Note that while the EEPAA shows evidence of larger-timescale dispersive
beams at higher energies, the same pattern does not seem to hold at the bagel energies.
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Figure 3.13: Scatter plots of bagel count gradients (top row) and HFE wave power gradients
vs. I (reactive, left column) and Q (resistive) fit values, with color as the ? goodness-of-fit
value. Note the clear relations in the I-to-count gradient (i.e. resonant electron density
gradient) plot, and the lack of any relation in the wave power plots.

payload data streams. In particular, the Langmuir frequency—as judged by finding the
whistler-mode cutoff on HFE spectrograms—was closely examined, but showed no obvious
short-timeframe reactions in relation to I or Q changes. The I-Vng relation to-date remains
the only relation seen.

3.4 Discussion

The above shows that the Correlator system has observed 57 potential wave-particle corre-
lation events, after thresholding for significance and hand-screening to remove interference
and potentially bad timeslices. An analysis of the reactive and resistive components of the
Correlator event timeslices reveals a relation between a positive Vrp at a given bagel energy
level, as in the case of an electron beam appearing at that energy level, and negative values of
I for coincident Correlator events, and a similar relation between a negative Vng and positive
I. Given the calibration of the Correlators, the positive half of the electric-field waveform
corresponds to a field pointing towards the bagels, and thus electrons being accelerated away
from them. Thus, the observed relation is consistent with energy going from the beam to
the wave field during a beam density increase, and the inverse for a density decrease. The
lack of evidence for a relation between the HFE power and I and Q is curious, given prior
observations by Kletzing et al. (2005) of such a relation on the RACE mission. It is possible
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that the extreme wave power during the majority of the events in S may mask such an effect,
particularly given that the amplitude modulation typical of bursty Langmuir waves is also
not prevalent in the CHARM-IT HFE data.

There are at least two relatively simple explanations for the pattern of correlations observed
between in-phase wave particle correlation phase and the gradient in the beam flux. The first
is motivated by the clear evidence for a dispersive beam in the event illustrated in Figure 3.11.
In fact, this type of dispersive beam is the normal pattern for parallel electron beams in so-
called Alfvénic aurora, in which the beams are accelerated by Alfvén waves at altitudes well
above the rocket, and undergo dispersion as they propagate to lower altitudes, with fast
electrons outrunning slower ones (Kletzing and Hu 2001; Chen et al. 2005). Figure 3.14
shows a schematic of the situation, as such a dispersed beam passes by a low-altitude rocket
payload. The beam energy decreases with time from left to right, and as shown, the energy
range of an appropriate fixed-energy particle detector will shift from lying below the peak
energy of the beam to lying above the peak energy. In the former case the detected energy
corresponds to the condition df /de > (0, which is destabilizing for Langmuir waves, and
the latter case corresponds to df/dv) <0 which is stabilizing. Under the former condition
one expects waves resonant to the detector’s energy to be growing, extracting energy from
the beam, which would correspond to the negative values of the in-phase component of the
electron-electric field correlation. Under the latter condition, the opposite energy flow would
be expected, corresponding to wave damping at the detector energy. The expected signature
in the phase of the electron bunching is exactly as observed.

The Figure 3.12 event is a case where the explanation given above falls short. While there
is evidence in the EEPAA data of dispersion at higher energies, the alternating patterns in
the ¢ data are difficult to explain, as is the large energy gap between the two bagels which
show a signal. An additional theory does not exclude effects from the above behavior, but
rather focuses on the beam appearance and disappearance at a small region of energy and
pitch-angle space. The two populations involved in this theory are the ‘warm’ background
electrons which are a degraded secondary population associated with a beam, and the beam
population itself. Depicted in Figure 3.15, the bagels observe a slice of the incoming particle
distribution along the parallel axis—as a beam appears, the highest-energy particles will

\ | i\
\_ \ “

Energy Energy Energy

Figure 3.14: A cartoon showing the ‘dispersive beam’ explanation for the relation seen
between I and Q and the particle count gradient. As time passes (left to right), the bagel
detector’s first sees the positive-slope region of the Maxwellian beam distribution, and then
later a negative-slope region. Thus a beam passing downward through a bagel’s energy range
will see resonant wave growth, followed by enhanced damping.
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Figure 3.15: A cartoon showing a more in-depth explanation for the relation seen between
I and Vn,. As a beam appears, the high-energy particles are the earliest to arrive, leading
to an exaggerated positive slope and wave growth (left). The remainder of the particles
and distribution relaxation then yield a plateau in middle times. Finally, when the beam
turns off at the source, the high-energy particles are the first to disappear, and in the right
configuration may yield an exaggerated negative slope, enhancing wave damping (right).

arrive first, and are likely to create a positive-slope region and wave growth. However, as
the beam turns off, it is also possible, depending on the energies of the two populations, that
an enhanced negative slope will appear as the higher-energy particles disappear first. This
enhanced negative slope can then lead to enhanced damping in a narrow energy region. The
presence of short-lived beam features in the top-left and bottom-right plots of Figure 3.10,
and their temporal relation to the nearby correlator events, is compelling evidence supporting
this theory.

Langmuir wave growth during an increase in the number of electrons at or near the res-
onant energy is generally expected because of the resultant instability, whether due to a
beam moving into an energy range, or simply appearing at that energy. While subsequent
damping is also expected, an impulsive enhancement of damping concurrent with the beam’s
disappearance, is, on the other hand, not an immediately obvious causal relationship.

Finally, in a high field, it is expected that unstable distributions will relax extremely swiftly,
leaving mostly trapped, reactive particles to be observed; thus, the degree of resistive activity
evident in the ratios on the right of Figure 3.9 is unexpected. These observations, and the
fact that many of the events are narrow in time, many in a single timeslice, may suggest
further structure at even shorter timescales.

A numerical analysis can confirm interpretations of the observed Langmuir wave growth and
damping—and hence the phase of the in-phase wave-particle correlation for both positive and
negative temporal gradients in the electron beam flux. It could also potentially allow probing
of activity at shorter timescales. Towards this end, a method was developed to simulate the
evolution of the electron distribution function, and thus the reduced distribution function
and Langmuir wave growth rate, as an electron beam propagates through a vertical distance
of approximately 5000 km in a converging magnetic field, with parameters close to those of
the auroral ionosphere.
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3.5 Simulation

The aim is to simulate a minimal-complexity environment that is sufficient to probe the
questions at hand: does an electron beam with reasonable characteristics, and which shows
significant Langmuir wave growth upon its appearance, also show enhanced wave damping
as it fades? Can we say anything about the short-timescale behavior of the wave growth
rate?

We shall define a ‘reasonable beam’ as originating with a Maxwellian distribution at a realistic
altitude, and traveling through a magnetic field with an Earth-like mirror ratio. A similar
analysis is performed by Arnoldy et al. (1999), and simpler methods such as one using a
guiding-center approximation might suffice. However, interesting effects may be evident in
this case and in broader applications, if detailed environmental attributes are taken into
account, such as electric fields and agryotropic distributions. We therefore choose to develop
a complex, flexible—and computationally intensive—test particle simulation system. Its
development on and application to this case shall use simple, gryotropic magneto-kinetic
parameters, with no inter-particle interaction or wave-particle scattering.

Following a numerical analog to the analytical method of Cairns (1987), we note Liouville’s
equation governs the evolution of a distribution function over time, and with no wave-particle
or inter-particle scattering, we can simply write

fEv) = f(&, V.1,

i.e. that the value of the distribution function at a source phase-space region (¥',v') at time
t' is the same for the related region (X,v) at time . The test-particle simulation is used to
relate the primed and unprimed regions, by creating a lookup table of particle travel times
T(E,o) for a range of source energies E and pitch angles a. These test particles are then
treated as centers of regions in phase space, and are used to ‘carry’, in time T, values of the
source distribution function down to a corresponding region (E,a) at the observation point.

In this analysis, z is taken to be positive, downward, field-aligned coordinate, with z =0
corresponding to the beam generation altitude. In order to only simulate particles which
will arrive at our ‘detection point’ at (x =y = 0,z = —5000 km) we use a deterministic
(i.e. time-reversible) simulation method, and originate our test particles at the detection
point with an upward velocity, watching for them to cross a target plane at z =0. The
velocities can then be reversed for the later downgoing analysis. The ‘Boris Method’ is
used—a standard, time-reversible particle pusher (Boris 1970; Birdsall and Langdon 2005).
This method separates the effects of the electric and magnetic forces, dividing them into
a half-impulse from any background electric field, followed by a rotation according to the
magnetic field, and then another electric half-impulse.

Careful testing of energy conservation led to setting a unitless timestep of 0.01. The base of
the time system is the electron cyclotron frequency, and so this is equivalent to each timestep
moving each particle a hundredth of an orbit. For the input parameters used, this yielded a
worst-case energy loss of 0.06% over the full length of the simulation.
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Figure 3.16: The 31 test-particle simulation launch-energy levels. Linearly spaced in
velocity.

To allow a realistic amount of time/space for mixing of particles of different energies and
pitch angles, a distance of 5000 km is used, corresponding to the distance from the bottom of
the electron acceleration region to the ionospheric detection point. The background electric
field is assumed zero, and the magnetic field is rotationally symmetric around x =y = 0,

defined as
P 1422, xz, yz. 1422,
STttt T
with L a scaling variable determined by our desired mirror ratio and target distance. For
the following simulation, the mirror ratio was set to 5.

In order to fully cover the range of energies detected by the Correlator, particles were
launched at the 31 energies plotted in Figure 3.16, linearly spaced in velocity, with en-
ergies ranging from 25 to 1225 eV. At each energy, particles were launched in a range of 41
pitch angles, with an angular spacing of 3w/256. Because of the rotational symmetry of the
simulation imposed by gyromotion, it is only necessary to launch particles at one azimuthal
angle—the results can then be rotated to fill a velocity-space hemisphere at the detection
point. As we would like our hemisphere segments to sweep out constant solid angles, we
require that, for pitch angle a, the particle rotates to the integer number of azimuthal angles
¢ which most closely yield A¢p = Sméﬁ, where A is the solid angle, herein set to 0.001
steradians.

The simulation code was implemented in MATLAB, manually fragmented into 64 shards,
and run in approximately five weeks on the Dartmouth Discovery cluster. Due to the finite
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Figure 3.17: Various diagnostics of the resultant travel times for the simulated test-
particles. Note that the energy and pitch angle in the lower row are the launch values
at the detection point (high magnetic field).

timesteps, which are unlikely to land precisely on z = 0, interpolation was required to find
exact crossing parameters. To enable this, the final 1000 timesteps for each particle were
saved (with the very last step having z > 0), and gyro-orbit equations were fit to these, from
which accurate final z = 0 position, velocity, and travel times come forthwith. All unitless
values were then interpreted via inter-defined base values: By = 50 microtesla, tg =~ 714 ns,
ro =~ 0.337 m, and vg = 0.00989 c, corresponding to 25 eV.

Figure 3.17 shows some basic diagnostics of the output of this simulation, with expected
trends compared to total energy and launch pitch angle. With a table T(E,a), we proceed
to reverse the velocities and launch distributions downward, towards our ‘detector’.

The distribution is imposed at the top (lowest B) on total velocity, [v| (i.e. we assume Tj =T
and a flat distribution across pitch-angle space), and sampled at the test velocities used in
S. The environment here is assumed to be both homogeneous and large enough that any
generated region of velocity-space at the top will detected at the bottom. Thus, we can
neglect the x and y positions of particles in the simulation.
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We seek to simulate an instrument observing the electrons being emitted effectively con-
tinuously from a source region, which contains a stable background distribution, and has a
strong beam appear, stabilize, and then disappear. Thus, we set a Afp period over which the
detector bins incoming particles, and a Atg period between source distribution ‘launches’.
To achieve something approaching the appearance of a continuous source, Atp should be at
least 10Afg.

A secondary background distribution serves as the main background to our beam for growth-
rate calculation purposes. It is a localized population, distinct from the much colder, higher-
density ionospheric background, and is composed of a population of degraded beam particles
with a higher density and temperature than the beam population. We define it as a constant
Maxwellian,

32 3 o) me \*? -
_ 2v _ _
f(v]) =n.(2r)"" = vy, e \2m/) =nyp, (27tkag) e b = fpo,

where, for a given input temperature, the electron number density n, is interpolated from
a table of values used by Lotko and Maggs (1981).

The beam is built with a similar form, except for time-varying parameters Tpeam (1), Rpeam(t),
and a velocity shift 8(z):

3/2 me(v—5(1))2
L) ei 2k(Tbear(ntgf))

)
21k Theam (t )

fbeam(‘v‘;t) = nbeam(t) (

where in practice Theam(t) and npequn(t) are set as fractions of the secondary background
values.

The final distribution is then the sum of these, as in Figure 3.18,

fe) :f(V||aVJ_79>t) = fiono + fbg + Fotpean (1)

where the contribution from the ionospheric background fi,,, with a 2000 K temperature is
included for completeness, but its effect on the distribution function is vanishingly small at
these high energies.

To dimensionally reduce these towards a parallel distribution function f (VH), we first sum
over the azimuthal angles. This is not a simple sum: as these are finite cells in velocity-space,
we must weight each angular ‘wedge’ by its accompanying A6, i.e.

f(VH,VL,[) = Zf(vH?vaeivt)Aeia
ive

where AB; is set by the pitch angle, as in the hemispheric interpolation.

We put off dealing with time until now because the hemispheric interpolation introduces
no time dependence, and so the azimuthal sum has none either. The next step will be
interpolating and reducing away a dimension from our test-particle simulation, so we must
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Figure 3.18: Imposed top distribution in |v|, showing ionospheric background distribution
(green dots), secondary background (blue stars), a beam distribution (red Xs), and final
combined sum (solid black line), with Ty, = 23 K, 1, ~ 1.984e9 m~3, Thg = 25 K, npg =
1.066e6 M3, Theam = 44 K, npegm = 21.32¢3 m~3, and & = 400eV.
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take travel times into consideration beforehand. This is simply a set limitation at detector
timeslice T, such that the particles we consider are, henceforth, in the set J; of particles
whose launch time fy and travel time f7 fulfill 1o+t <=1 and > T —1tp. There is also an
implicit sum here as we are taking the detector integration into account, and this needs its
own weighting value for f, simply the ratio of the launch time and the integration time, i.e.

AIS

A_th(JT)'

fp,ve,t) =

Next, we sum over perpendicular velocities to get a one-dimensional reduced distribution
function, taken from the standard Landau theory for parallel propagation (e.g. Ergun et al.
(1993)). This is slightly complicated by the large number of unique v values. We define a

set of ‘center points’ in v as simply the points along the v, = 0 axis. For each of these v,

. . V-1tV V)it .
all values of f with v in the range y = { L 12 £ 2 2“"“} are summed over v| using a

modification of the trapezoidal rule,

f(,LlH,VJ_J,T) _'_f(/'lH?vJ_,j—!—l?T)
foat =Y ijiri—vi)) 5 Vi,

T

where the factor v ; is the phase-space cell weighting. Figure 3.19 shows a color plot of the
reduced distribution function vs. v and time, as well as several timeslices as the distribution
evolves through the beam-arrival phase.

Now, with a time-integrated one-dimensional reduced distribution function in v, we can
calculate growth rates. For a given cold ionospheric background plasma frequency ®,, wave
vector k = k|, and test plasma frequency @, the growth rate is

de\ ™" 2 Tf(vy,
Y )) k0, 01, 7) = (f)) Sign[k] =7 [ / évv” T)] |
kVH:(Dt

k2n,

2

where € is the dielectric function, approximated as 1 — % for cold plasma. The derivative
(2

df1/dv) is calculated at a test velocity related to the beam parameters, specifically the closest
v value to 8+ Tpeam/kB-

Ideally we would want to set Atp to match the Correlator’s timeslices, 1 ms, and to allow
the simulation to ‘settle’ for a long enough time between source changes that even the
slowest particles reach the detector, approximately 14 s per change. However, given our
above guideline that Arg < Afp/10, this would require storage of prohibitive numbers of
time-overlapping distributions. From Figure 3.17 we know that the majority of particles will
have arrived within 5 seconds, so we use that as our settling time, and only use realistic Azp
in special cases. Finally, we relate k values and ®, values via an approximation of the warm

plasma dispersion relation, ® = ®, + %kQV?h /®,, where vy, is the background ionospheric

thermal velocity \/3kTiono/me.
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Figure 3.19: Reduced distribution function values. Top shows a color plot vs. v and

time, for the entire time span of the test.

Below, six timeslices from the beam arrival

period, showing the formation and disappearance of a positive slope. Note that the continued
appearance of low-energy particles near the bottom is the tail of the background distribution.
It has not yet arrived before beam turn-on, but is considered too small to significantly affect

the results.
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Figure 3.20 shows the final results of the simulation: Langmuir wave growth rate 7y, versus
k and time (on the horizontal axis), calculated for ®; from approximately 1.00022w, to
1.00540,. The top panel shows the npeum/npg at the top, while the two columns are zoomed
into the times at which the bulk of the particles arrive during beam turn-on (left), or depart
with beam shutoff (right).

The top growth-rate panels show y on the vertical axis, as well as in color scale (blue is
negative, red positive). Both a growth rate spike during the beam arrival and a damping
enhancement during beam departure are clearly visible. This result matches qualitatively the
pattern observed in the phase of the in-phase, resistive component (I) of the wave-particle
correlations during positive and negative gradients in beam flux.

In the lower panels, the color scale is still y, and the vertical axis is the wavenumber k. The
strongest growth and damping are associated with the long-wavelength modes at k < 0.004,
which is generally expected as shorter-wavelength modes are more heavily damped. Growth
at the long wavelengths is associated with the earliest-arriving, higher-energy particles, with
the later lower-energy arrivals exciting some growth at shorter wavelengths.

The overall timeframe of the growth and damping peaks are of order 100 ms, which is
significantly longer than most of the observed wave-particle correlation events; however,
there is suggestion of shorter-scale time structure in the simulation events, particularly of a
double-peak in the growth rate. To further probe the small-scale structure of these results,
we can modify certain parameters of the distribution-building. Figure 3.21 shows the results
of three such tests: moving the beam by half the inter-energy spacing, both up and down
in energy, as well as removing half of the energies entirely. Motivated by the fact that
realistic electron beams have lifetimes orders of magnitude smaller than the 5 s beams used
in Figure 3.20, Figure 3.22 shows the result of a beam with identical parameters, but a
lifetime of only 100 ms. The general impression of the above tests is that all of the small-
scale structure seen in Figure 3.20 is heavily dependent on various aspects and limitations
of the simulation system itself. Thus, these structures may bear little to no resemblance to
any physical reality—even an approximation of such. Given this, as the simulation stands,
no quantitative conclusions can follow regarding the small-timescale behavior of the growth
rate.

3.6 Conclusions

The CHARM-II sounding rocket successfully carried a wave particle correlator to an apogee
altitude of 802 km in substorm aurora. The correlator instrument locks onto the highest-
amplitude waveform in the 100 kHz to 4 MHz range, ideally the wave at the Langmuir
frequency, and bins incoming electrons at 8 energy levels into 16 phase bins. It returned data
from > 400 seconds of flight time, and after both automated and manual event selection,
57 timeslices containing events of interest were selected and analyzed. Breakdown of the
phase correlation data into resistive and reactive components revealed a striking relationship
between electron beam dynamics and the nature of the wave-particle correlation: whenever
the beam flux at the measured electron energy was increasing with time, the phase of the
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Growth Rates, Atg =0.001 s, Afp =0.01 s
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Figure 3.20: Results from the simulation: Langmuir wave growth rate v, versus k and time
(on the horizontal axis), calculated for @; from approximately 1.000220, to 1.0054®,. The
top panel shows the npeqm/ npg for at the top, while the two columns are zoomed into the
times at which the bulk of the particles arrive during beam turn-on (left), or depart with
beam shutoff (right). The top growth-rate panels show 7y on the vertical axis, as well as in
color scale (blue is negative, red positive), and both a growth rate spike during the beam
arrival and a damping enhancement during beam departure are clearly visible, qualitatively
matching the the pattern observed in the data. In the lower panels, the color scale is still v,
and the vertical axis is the wavenumber k.
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Figure 3.21: Test inputs and resultant growth rates, showing that much of the small-
timescale structure seen in the growth rate is due to binning effects.
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Growth Rates, Aty = 0.001 s, Aty = 0.01 s, 100 ms Beam
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Figure 3.22: Growth rates resulting from a beam identical to that in Figure 3.20, but
lasting only 1/50th of the time.
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resistive component of the electron bunching implied energy transfer from the wave field to
the particles, and when the electron beam flux was decreasing, the reverse occurred. This
pattern was repeated for all events, and was particularly clear in several events, including
the largest-amplitude event investigated by Kletzing et al. (2011).

Two related theories to explain this observation have been explored, one invoking the chang-
ing nature of the interactions of the electrons with a given Langmuir wave as the beam
energy decreases, as typically occurs due to dispersion of an auroral electron beam accel-
erated several thousand kilometers above the interaction location; and the other invoking
detailed features of the electron distribution function at ionospheric altitudes, arising when
the electron beam is modulated at higher altitudes. A magneto-kinetic test-particle numer-
ical simulation confirmed that for an electron beam which causes an impulsive increase in
wave growth upon its appearance, its disappearance will be accompanied by an impulsive
enhancement of wave damping within the same frequency range. The results therefore agree
qualitatively with the experimental data from the CHARM-II rocket, though an exactly
simulated quantitative representation has not yet been achieved.

The numerical simulation system developed consists of a flexible, cluster-enabled, node-
independent suite of MATLAB scripts using the Boris Particle Pushing algorithm, modular
background and beam distribution functions with arbitrary time-changing beam profiles, and
adaptive distribution function dimensionality reducer algorithms. This system may be easily
adapted to a multitude of tasks, including significant extensions of the work presented here,
such as including non-uniform beam profiles and considering a broader class of Langmuir
waves (k; # 0) in the growth rate calculations. These and other extensions of the model-
ing may provide more quantitative tests of the time structure or magnitude of correlations
observed in the CHARM-II wave particle correlator data.

Thanks to Dr. Scott Bounds and Dr. Stephen Kaeppler for assistance with the Correlator
data and calibrations, and to Dr. Wayne Scales for providing the original magneto-kinetic
test-particle code on which this simulation system was based.
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