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Our choicest plans have fallen through,
our airiest castles tumbled over,
because of lines we neatly drew
and later neatly stumbled over.

— Piet Hein, Grooks

Preface
Having made known my plans to leave academia, I’ve been asked by a few people whether
I dislike science, or my field in particular, and whether I regret having gone to graduate
school, or determining to go for the PhD. While I think it’s fairly common to feel a certain
ambivalence towards many things at the end of this process, I do not regret the friends made,
the learning, or the experiences I’ve had, and shared. I have simply decided that there are
things I would like to do which would not be possible or as effectively achieved within the
framework of academia.

I certainly do not feel this degree was a ‘waste of time’ in any way. Regardless of whether
the flashy piece of paper and extra letters near my name help me in any way, the tools and
methods and ways of looking at problems I’ve learned in the past nine years are universal.
Physics has at its heart the paradigm of problem solving...and there are always problems to
solve.

It was not till I really started thinking about it that I realized how many thanks I could
potentially pass around. There are the obvious people, the big ones, but a thesis is a lot of
words and images, and there’s a lot of work in and behind it. Everything I create and do
and even think is the end result of experiences and influences, knowledge and wisdom, built
up in sometimes odd or surprising ways, from myriad sources. Some of the people I would
like to mention cannot know that I did so, and others would not care if they did know; yet,
I feel motivated to make the list fairly exhaustive...

Thank you to my mother, for raising me to be such a nerd, and then putting up with the
results. To all of my family all over the world, for their love and support. And to Belle von
Woo for keeping me sane and warm, and tolerating my shenanigans.

To Jim LaBelle for his enthusiasm and expertise, and for not giving up on me. Well-met to my
colleagues at StingeCo: Chris, Nick, Matt, Xi, Howard, and Spencer—not only would science
have been more difficult without you, it also wouldn’t have been nearly as entertaining.

My gratitude for help and advice to David McGaw and Mike Trimpi, Bill Hamblen, Richard
Brittain, Susan Schwarz, and Terry Kovacs.

Much thanks to Doug Rowland for NASA GSRP mentoring, to Steve Kaeppler for cama-
raderie and assistance, and to everyone at the NASA Wallops Flight Facility, for making our
science things go into space, as well as for being pretty awesome to work with. Thanks also
to the support staff at South Pole Station, for endless help with our recalcitrant equipment.
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Cheers to all of my Dartmouth friends and cohorts—if suffering shared is suffering halved,
then this all can’t have been that big a deal...right? Right. Shout-outs to Jess, Jerod, and
Julie, Thiago, Nic, Mingyun, and Idan—alas, Ben, we hardly knew ye. Thanks to Damian
for dinners and dramatics, and to all my wine and cheese connoisseurs. Thanks to Greg
Feiden, for many things, including making this LATEX template.

Much gratitude to my committee members, for reading this brick, and then making it bet-
ter. Thanks to all the faculty in the Dartmouth Physics & Astronomy department, for
enlightening classes and discussions.

To Franklin & Marshall faculty and friends, especially Ken Krebs and Beth Praton for being
amazing undergrad research advisors. To Tim, Brian, Becky, Rory, Elizabeth, and Zach, for
making long, homework-filled nights seem short. To the Fry Guy, for being pretty damned
awesome.

And of course, thanks to my HACC Lancaster friends, faculty, and coworkers—every journey
starts somewhere, and though it was ‘only’ a quarter of my time in college, my experiences
at the Ha’vahd of Pennsylvania still influence everything I do and create—even this thesis.

Special thanks to Stephan Williams, for enlightenment and laughter, for being a dear and
lasting friend, and for supporting dastardly schemes.

Long live The Herodotus Society!

Love to Gingerbread, for listening when I fall apart—to Arch, for that thing, and Cinna, for
words and snacks. To Exto, Jackie, HMC, and Archer, for amusement and consternation,
and Ara, for a cheesesteak. To Xaq, for her hard work and nerdery. Hi, Jesin! Thanks to
Bolty, for J.

To Beatrix and Butterflies, for focus, and to the Pink One, for having my back.
One needs one’s totems, after all...

For being both the oddest and best mixture I’ve known of thoughtful discussion, absurdity,
and amusement, thanks to the Jury, ya crazy sack of lemurs. And of course, my gratitude
to He of Many Names, for making it happen, and for fueling the wild-and-nearly-baseless-
speculation part of my brain.

To the East Horse, and Scrivener, for endless drama. To Sanguinius, for breadcrumbs, and
Dromicosuchus, for a revelation. To Faust, for being a fan, and the unforeseen consequences
thereof.

To Quinn, Sigmund, Miko, Isis, Osiris, Faust, Mayet, and Florian, for faithful service.

To Reiska, for never losing touch.

To Linus Torvalds, and Steve Jobs, for operational diversity.

To Notch, for infinity.

To Nintendo, Square, Cyan, and Valve; Tetsuya Mizuguchi, Davey Wreden, and Jonathan
Blow—for interactive art.
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Chapter 1

Above the Aurora

Figure 1.1: Aurora seen from the International Space Station (NASA/ESA/
Alexander Gerst https://twitter.com/Astro_Alex/status/505282945272524800).

Earth seems a fantastic place full of magic and wonderment. Alas, as for children growing
up, we have, as a species, cast off our notions of magic, and pounded our heads against
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reality until it gave us deeper knowledge and understanding of the interactions underpinning
what once we explained fancifully. So it is with the aurora, both borealis and australis: not
for many years have those with any scientific interest been for long able to pass the northern
and southern lights off as the work of spirits, ghosts, or gods—excepting, perhaps, if one
were to desperately attempt to classify auroral spirits as spirits of gaseous fluorescence.

We have examined the gasses in our atmosphere, and asked why they would ever be so
gauche. “Tis not our fault,” they declaim, “but that we are so excited by these brutish
electron beams.”

While it is tempting to simply pass it off as poor taste on the part of these gasses—certainly
oxygen is possessed of enough character flaws already, always getting into other elements’
business—an expanded examination enlightens everyone, exposing an electric edifice. Elu-
cidating: there exists a grand electric circuit1, the volumetric bulk of which lives in space,
but which exists because Earth and its magnetic field do, and indeed, makes one leg of its
journey through Earth’s upper atmosphere.

Figure 1.2: An artist’s rendition of the solar wind blowing against the Earth’s magneto-
sphere (NASA SDO http://sdo.gsfc.nasa.gov/mission/).

Exists because of, but not solely: as with everything in our general vicinity, our system needs
a Sol. As the Sun spins its merry way through the galaxy, it also projects out a panoply of
particles both neutral and not, and its very own prodigious magnetic field proceeds along
with the plasma part of this play. As far as one can push a comparison of this outflow of
solar-wind soup to a river, one then begs leave to similarly portray the Earth and its much
more minute magnetic field as a water wheel, capturing a significant fraction of the energy

1Not to be confused with its neighboring circuit, which connects the Earth’s surface to the ionosphere
via lightning.
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that impinges on it, and the power output of which drives a myriad of processes throughout
Earth-space.

Here then as in Figure 1.2 we have the origin of our electric circuit of interest: the Sun
and Earth’s magnetic fields grinding both with and against each other (as mercurial moods
mandate), providing both energy and direction to a party of particles from both bodies. This
uproarious region, defined in the fore by the balance of solar wind pressure versus Earth’s
magnetic field, and in the aft by the whimsies of chaotic interactions, and being shaped in a
general sense along the lines of a teardrop as shown in Figure 1.3, is classified as the Earth’s
magnetosphere. Of its associated plasmas, the Ionosphere is merely the most earthward
march.

Figure 1.4 forthwith portrays but a small fraction of the bevy of chaotic interactions and
phenomena which call these regions home; however, we shall in the wake of our projective
expansion choose to limit ourselves closer to our original purview: precisely, processes within
the auroral ionosphere, though these are of course affected by more distant realms.

Figure 1.3: A basic diagram of the Earth’s magnetosphere, with several features of the
field and plasma populations visible (T. W. Hill via http://space.rice.edu/IMAGE/livefrom/
sunearth.html).

1.1 PARTICLES!

Far above the the lovely lightshow, we find electrons which move within the confines delin-
eated by Earth’s magnetic field, B, forming a multipart current system, parts of which are
depicted in Figures 1.3 and 1.4. The electrons most important for our current consideration
come from a population trapped in the plasma sheet: a long, thin tail of hot, relatively dense
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Figure 1.4: A depiction of current systems within the magnetosphere (Adapted from Keyser
et al. (2005)).

plasma trapped between the two lobes of the tail region of the magnetosphere. Our circuit
then travels along the highly conductive magnetic field lines, towards the Earth’s magnetic
poles—there, as the magnetic field lines continue on into the neutral, insulating lower atmo-
sphere, they first find a nice, lower-resistance region in which to complete the circuit: the
higher-density regions of ionosphere. These B-parallel or ‘field-aligned’ currents, also known
as Birkeland currents, are the primary source of aurora, though at their end the circuit is
completed by the Pederson and Hall currents, which are perpendicular to B.

Variations in and interactions between these various currents and fields can create large
potential drops along field lines, accelerating electron beams, which pump energy into at-
mospheric neutrals and plasmas. The subsequent release of some of the energy through
photon emission—fluorescence—is what we call aurora. This is, however, only a small part
of the story. While the result most obvious to the eye is auroral illumination, improvement
of instrumentation and techniques has refined our understanding of these processes from a
vague knowledge of the bulk energy transfer, to current knowledge of fluctuations in the
electron-beam source regions on smaller and smaller temporal and spatial scales, as well as
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the presence of small-scale density variations, gradients, and cavities.

From Figure 1.4 it is clear that there are both upward and downward current regions, but it
is the lower-latitude, upward currents which are most important for generating the aurora,
for it is here that electrons are accelerated downward in order to fulfill those current needs.
The activity varies for several reasons, including the direction of the solar wind with respect
to the Earth’s field and the overall intensity of solar activity. With high levels of solar
activity comes increased occurrence of magnetic reconnection, in which field lines in the
sun-facing, or ‘dayside’ magnetosphere open to solar field lines at the bow shock, and then
wrap around to the tail/nightside, releasing significant amounts of energy and often injecting
both magnetosheath (external solar) and magnetospheric plasma into the current system,
increasing auroral activity.

A significant place where reconnection and magnetosheath plasma have effects is in the
magnetic cusps (see Figure 1.3), where the closed field lines which lead the bowshock trade
off with the open field lines that form the outer fringe of the tail. Here, the field leaves a
gap which even at quiet times can offer some amounts of solar plasma direct access to the
ionosphere.

The energy being pumped into the ionospheric plasma has many more effects observable
by more diverse instrumentation; in particular, radio-wave and charged-particle detectors.
While the electron beams travel, already oscillating around their field lines at the cyclotron
frequency fc =

|q|B
me

, they may interact with the ionospheric plasma as its density increases
to the F-region peak, then falls. The ionosphere is a perfect environment for the generation
of various plasma and electromagnetic waves.

1.2 WAVES!

Any plasma with incoming energy is a natural environment for the generation and propaga-
tion of a menagerie of waves. The great variety of waves we can detect in-situ via satellites
and sounding rockets can, in theory, serve as probes of regions in the plasma; however,
a thorough understanding of wave generation, mode conversion, and transit is required.
Small-scale frequency-time wave signals are generated by plasma structures and modified
in-transit by other structures, and so specific types of wave phenomena can be used to probe
their associated small-scale plasma structures.

While both the electrons and ions have a part in plasma dynamics, when studying the
electron component of a plasma, it is often convenient to treat the ions as an immobile
background (effectively infinite mass). This is a fine approximation to make as long as the
frequencies being studied are high enough that the ion motion is negligable.

In an electron plasma, the simplest and most fundamental waves are oft referred to as ‘Lang-
muir waves’, after Irving Langmuir, who first detected them in laboratory discharge plasmas
(Langmuir 1928). This is an oscillation in the electrons which is most easily visualized in a
‘cold’ plasma, where the thermal velocities are ignored. Then, given a stationary population
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of electrons with a background of fixed ions, any displacement of the electrons will be re-
stored by the Coulomb force, setting up an oscillation at the ‘plasma frequency’ ωpe =

√
nee2
meε0 ,

where ne is simply the density of electrons in the plasma. In a cold plasma, the Langmuir
wave is a standing wave.

In a warm plasma, when we take the electron thermal motion into account, the electron
pressure is an additional restoring force, and the frequency is determined by ω2 = ω2

pe +

3k2v2e,th = ω2
pe +

3kBTe
me

k2 with ve,th =
√

kBTe/me the electron thermal velocity and k̄ the wave
vector. This propagating wave can be visualized as a compressional wave along the direction
of propagation, or along the magnetic field line in a magnetized plasma.

As Langmuir waves directly interact with both the local plasma and impinging electron
beams, they are highly sensitive to the motion and instability of particle populations in the
upper atmosphere. Thus, greater understanding of Langmuir wave generation, damping,
propagation and interaction is essential to understanding ionospheric plasma and its tem-
poral and spatial variations. A greater understanding of the proportionality and behavior
of Langmuir modes through direct measurement can also yield insights into plasma heating
and energetic particle sources in such environments.

As the primary instability that occurs in beam-plasma interactions, Langmuir waves are
ubiquitous in space physics; thus, any localized study of Langmuir waves may yield insights
into processes and interactions in other environments. There are too many examples to
cover them all, but we review below four case studies which serve to illustrate the range of
phenomena they are involved in, the diversity of locations, and how important they are in
space physics.

Langmuir waves exist in diverse regions, sometimes because of subtle interactions. While
prior observations of Langmuir waves in Earth’s foreshock correctly predicted their presence
as arising from the two-stream instability, Filbert and Kellogg (1979) examined data from
the Imp 6 satellite, and found that the required double-peaked distribution is generated by
time-of-flight effects from interactions at the bow shock. Figure 1.5 depicts this process,
in which the tip of the bow shock acts as a reflector and source of particles, modifying
the distribution enough to yield a second peak in a small region. It was also shown that
the resultant growth rates were high enough that some additional mechanism is required to
stabilize the distribution in so short a time that the generative unstable distribution was
not observable with the Imp 6 instrumentation. They found that a mixture of wave-wave
interaction and quasi-linear relaxation in different spatial regions was sufficient.

Lin et al. (1981) examined a particularly strong type III solar radio burst observed 17
February 1979 on the ISEE 3 satellite. They find Langmuir-wave growth consistent with a
bump-on-tail distribution generated by dispersion, as in Figure 1.6. They also found that
additional mechanisms were required to fit the observations: that wave growth must be
limited by nonlinear processes such as wave-wave interaction or the emission and collapse of
soliton structures, and also that the distribution did not plateau as expected, implying that
waves are being removed from resonance with the positive slope in the distribution. They
also note the impulsive character to these Langmuir waves, typical of type III bursts.
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Figure 1.5: The process described by Filbert and Kellogg (1979), by which a two-stream
instability is produced in the Earth’s foreshock. Left, in the narrow region between tangen-
tial field line A′ and its parallel A, the bow shock acts as a reflector of electrons traveling
down solar field lines. Right shows the effect on the distribution, creating a double-peaked
distribution in a small region.

As Langmuir waves are a key avenue of energy-release for their generative electron beams,
the processes which mediate beam-plasma energy transfer are key to how and why they are
able to propagate long distances. Because of this, a thorough understanding of Langmuir
wave growth, interaction, and decay processes can aid in understanding electron beam transit
and the evolution and relaxation of beam distributions.

Gurnett et al. (1981a) examined data from the 1979 Voyager 1 flyby of Jupiter, finding several
examples of intense Langmuir waves upstream of Jupiter’s bow shock, generated by the
mechanism described by Filbert and Kellogg (1979). In addition to allowing an independent
measurement of the electron density profile (Gurnett et al. 1981b), the high sampling rate
of the Voyager wave instrument with respect to the local ωpe allowed for observations of fine
structure in the wave data, including the variable amplitude modulation shown in Figure 1.7.
This is interpreted as the result of beating between the Langmuir waves and sideband waves
created due to parametric interactions, possibly involving background ion-acoustic waves.
Further, they found some evidence of soliton-like structures being created and subsequently
collapsing, as suggested by Lin et al. (1981).

More recent observations, such as by the STEREO spacecraft, find no evidence of soliton
collapse in the solar wind (Graham et al. 2012). Instead, stochastic growth appears to
mediate energy flow to and from relaxed electron beams, with fine and inhomogeneous density
structures playing a crucial role in the foreshock (Malaspina et al. 2009). The need for three-
dimensional instrumentation is also becoming clear, as significant wave power connected
to type III solar radio bursts has been observed both parallel and perpendicular to the
background magnetic field (Malaspina and Ergun 2008; Graham and Cairns 2014).
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Figure 1.6: A model of a bump-on-tail distribution generated by a dispersive electron
beam, presented by (Lin et al. 1981). The highest-energy beam electrons arrive first (time
t1), creating the bump and its wave-generating positive slope. The waves should eventually
plateau the region, though as slower electrons arrive (t2) the peak may shift to lower velocities
first.

Figure 1.7: The Langmuir wave amplitude modulation observed by Voyager 1 (Gurnett
et al. 1981a).
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As with particle instrumentation, radio wave receivers and data returns have constantly
improved. Langmuir waves, as well as other HF waves, have been observed to be, not con-
tinuous, but sporadic and at times highly structured. McAdams (1999) studied a number
of high-frequency phenomena which occur near intense Langmuir-wave activity. ‘Bands’ are
monochromatic, narrow-band emissions seen in underdense (ωpe < ωce) regions, and spec-
ulated to originate as Langmuir waves generated in regions of highly variable plasma den-
sity, and subsequently converted in higher-density regions to long-lived, freely propagating
whistler-mode waves. Chirps are impulsive emissions with a time-varying, primarily decreas-
ing frequency, and are consistent with the ‘spike’ emissions observed via satellite and reported
by Beghin et al. (1981), as well as with a proposed mechanism wherein Langmuir waves gen-
erated in density cavities are converted to Z-mode waves. More interesting still are effects
arising from excitation of Langmuir waves in regions characterized by pre-existing electron
density fluctuations. McAdams et al. (2000) show that the ‘bands’ observed by McAdams
and LaBelle (1999) result when the scale size of the density fluctuations is comparable to the
Langmuir wavelength. In this case, the Langmuir waves form discrete eigenmodes, and the
frequency spacing of these eigenmodes predicted by theory matches that of the Langmuir
wave ‘bands’. Similar phenomena are reported by Malaspina et al. (2012) for Langmuir-
wave related solar wind emissions. Doppler shifting due to the high solar-wind speed makes
the eigenmodes harder to discern, but their presence is convincingly demonstrated through
fitting the theory to the data.

While Langmuir waves have been observed and characterized in many environments, this
work seeks to address two particular gaps which still exist. One of these lies in the realm
of three-dimensional, high sample-rate measurements, which are nearly unknown, though
Malaspina and Ergun (2008) have observed some three dimensional structure via the STEREO
spacecraft. Such measurements have the potential to speak to questions regarding wave-wave
interactions and Langmuir-wave spatial structure. The other gap lies in the area of wave-
particle correlation, which aims to directly examine the microphysics of the wave-particle
interactions which both generate Langmuir waves and damp them away. Only a few such
instruments have been reported on in the literature, and with a very limited number events
observed in each case (Gough et al. 1990; Boehm et al. 1994; Ergun et al. 1998; Kletzing
et al. 2005).

Chapter 2 covers related development efforts to improve a new Receiver/Digital Signal Pro-
cessor system which has a frequency range appropriate to study ionospheric Langmuir waves,
as well as many other space plasma phenomena. An iteration of this system was flown on the
CHARM-II sounding rocket mission, and is currently deployed at several sites for ground-
based auroral radio studies. Included is a detailed description of an in-situ high time- and
frequency- resolution observation of auroral roar.

In Chapter 3 we describe results from the ongoing collaborative Dartmouth College/U-
niversity of Iowa wave-particle correlation study, an iteration of which was flown on the
CHARM-II mission. These results are analyzed and discussed, and then a numerical sim-
ulation is implemented to evaluate the plausibility of two related theories explaining what
was observed.

Chapter 4 details a three-dimensional study of the bursty nature of Langmuir waves observed
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on the TRICE mission. A theory explaining these is reviewed and tested, involving wave-
wave interaction with oblique electrostatic waves.

Finally, Chapter 5 summarizes our results, and suggests future continuations of this work,
while the Appendices shall record the major programmatic codes created for this work, and
attempt to document their usage and quirks.
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Chapter 2

An Autonomous Receiver/Digital
Signal Processor for Wave
Experiments:
The Dartmouth Rx-DSP

2.1 Introduction

Instabilities in space plasmas produce waves in a wide range of frequencies and bandwidths,
with a large variety of time signatures, detectable both in situ and remotely. Detector
technologies include inductive loops for magnetic fields, double probes for electric fields, and
Langmuir probes for plasma density. For receivers, the ideal wave analysis instrument would
involve a direct high-frequency analog-to-digital (ADC) sampling of the output of a given
detector or antenna, with the highest possible sampling rate and bit depth. While technology
has advanced in recent years to allow continuous sampling at 20 MHz or beyond, it is often
not feasible to use such techniques directly, due to limited data transmission and storage
capabilities.

Furthermore, it is often desirable to record wave data from multiple detectors simultaneously,
e.g. from spatially separated or orthogonal antennae. Such measurements can allow detection
of wave polarization and propagation directions. Simultaneous sampling requires a high
degree of ADC sample synchronization across multiple receivers, and results in even greater
demands on data storage and transmission systems, rendering direct simultaneous sampling
even less attractive.

Data storage and transmission limitations are at their most severe on spacecraft, and there-
fore many innovative solutions have come out of that community. For example, the Cluster
satellites, launched in 2000, included the Wide-Band plasma investigation (WBD). This in-
strument was capable of downconverting in selected frequency bands, removing the need for
storage of samples at twice the Nyquist rate (Gurnett et al. 1997). Another example is the
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Waves instrument onboard the Van Allen Probes (formerly RBSP), launched August 2012,
which is similar to the WBD, but also allows for dynamic Fast Fourier Transforms (FFTs)
and data compression (Kletzing et al. 2013). The receiving system most similar to the sub-
ject of this chapter is the Radio Receiver Instrument (RRI) on board the e-POP payload of
the Canadian CASSIOPE satellite. The RRI directly samples four probes at 40 MHz and
then performs on-board signal processing (James et al. 2015).

The Dartmouth Receiver/Digital Signal Processor (Rx-DSP) represents another recent de-
velopment effort to address these issues. As a digital downsampling receiver, it can transmit
wave data within a specific band or set of bands within the 0 to 33 MHz range. The data can
be sampled either continuously or in bursts, allowing for fine-grained customization of the
transmission data rate. In addition, the Rx-DSP boards are designed for cross-receiver sam-
ple synchronization to within 2 nanoseconds. The Rx-DSP is set apart by its autonomous
capabilities with remote reprogrammability, high maximum sample rate, and myriad options
for data transmission. The generalized nature of the instrument front-end allows for use with
a wide range of detector hardware. It also allows for a variety of both spacecraft-borne and
ground-based applications, as discussed below.

Section 2.2, describes the current iteration of the Dartmouth Rx-DSP hardware, and Sec-
tion 2.3 explains the naming convention for individual deployments. Section 2.4 provides
an overview of the firmware used on the onboard programmable DSP. Finally, Section 2.5
presents three examples of applications of this system to space physics, with case studies of
one rocket mission and two ground-based detectors.

2.2 Hardware

The Rx-DSP is a low-cost analog-to-digital receiver and signal processor board, designed for
use in both ground and space scenarios, and specifically engineered for cross-board sample-
synchronized acquisition. The use of purpose-specific receiver components allows for a sig-
nificant shortening of system development cycles as compared to an FPGA-based solution,
by removing programming, testing, and debugging complexities; however, the specific com-
ponents chosen for the Rx-DSP platform maintain appreciable flexibility in the field. The
detailed architecture of the boards has sounding rocket flight history from instruments pro-
duced at the University of Iowa. The current generation of boards have been tested for
reliable operation at temperatures from 0 to 50 C—more extreme ground environments re-
quire external regulation, such as placement in insulated or heated boxes, whereas sounding
rockets are warmed on the launch pad, and flights are not long enough for cooling to be a
concern. While the Rx-DSP design could be extended for high-radiation space environments,
this has not been a goal of current development efforts. Data acquisition systems incorpo-
rating the Rx-DSP are easily crafted for autonomous operation with no external command
and control, transmitting results via a number of protocols. Figure 2.1 shows a picture of
the topmost Rx-DSP board in a stack of two—a configuration used in several applications.
The data flows through the board as in Figure 2.2, going through asynchronous Receive,
Processing, and Transmit stages.
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Figure 2.1: A photograph of the top board of an Rx-DSP stack ready for a rocket flight, with
6 inch ruler for scale. Highlighted are the SMB signal input (black), cross-board synchroniza-
tion lines (white), AD6644 & AD6620 signal processors (cyan), IDT72285 FIFOs (purple)
TMS320C542 programmable processor (red), and the program-code EEPROM (green).
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Figure 2.2: A diagram depicting the major parts of the Rx-DSP hardware, and the data flow
between them, with the dashed line indicating command/control and solid lines indicating
data or both. The colored background boxes indicate which systems are controlled by which
clocks.
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The Receive stage takes a balanced analog signal with a maximum 1 volt peak-to-peak
amplitude, fed to the input of an Analog Devices AD6644 ADC, which samples at 66.6666
MHz with 14-bit resolution, yielding a 33.3333 MHz Nyquist frequency, 74 dB signal-to-
noise ratio (SNR), and 100 dB spurious-free dynamic range. There is no built-in filtering,
and an input bandwidth of 250 MHz, allowing for undersampling downconversion; thus,
each application requires customized front-end pre-amplifiers and filters for band-limiting
and antialiasing. The outputs of the 6644 are linked directly to an Analog Devices AD6620
programmable digital Receive Signal Processor (RSP). This processor performs quadrature
frequency translation, and then decimates and filters the incoming signal through three
stages, yielding a band with width, center, and filter characteristics defined by a table of
values and filter coefficients. The RSP can further improve the SNR, and the total system
performance and frequency response will be unique to each application, determined by the
preamplifiers, filters, and cabling used. The quadrature data is output from the RSP as
16-bit words, with In-phase and Quadrature (I and Q) words being interleaved, and each
word is accompanied by a bit which indicates whether a given sample is an I or Q word. This
relatively low-frequency, 17-bit data is then stored to an 18-bit Integrated Device Technology
IDT72285 First-In First-Out (FIFO) buffer.

The receive FIFO output is accessible to a Texas Instruments (TI) TMS320C542 Digital Sig-
nal Processor. This processor has a number of useful built-in peripherals, runs on an external
clock (generally set for 40 MHz operation), has 10 kilowords of built-in RAM, and can access
up to 16 KB of program code and tables from an external PROM. In many deployments,
this DSP acts only as a data router and packager, adding headers and/or synchronization
information before passing the data onwards. However, by loading custom software to this
processor, a variety of real-time, streaming data processing effects are achievable, such as
FFTs and various types of compression, though no such deployments will be shown in the
case-studies herein.

After all desired data processing steps are complete, the data in memory can follow a number
of output paths. First, the data can be sent at high speed to a second IDT72285 FIFO. The
outputs of this FIFO are accessible to high-speed serial and parallel LVDS outputs, at any
speed up to the full quadrature data rate. A second option can exploit one of two serial ports
available on the TMS320C542: a buffered serial port that allows efficient data transfer at
standard RS-232 speeds, and a time-division multiplexed port that allows multiple boards
to share one serial link. A third option makes use of a parallel Host Port Interface that
allows the DSP to connect to an external device at high speeds (up to 8 MBps). Finally,
a fourth possibility is to wire and program the Rx-DSP to allow dropping to a single-line
interactive serial console, through which a user can trigger single acquisitions, read data,
configure settings, or remotely re-burn the firmware EEPROM.

In many use cases, the DSP is able to spend idle time in a low-power mode, significantly
reducing the average power draw of the Rx-DSP board—without detailed optimization, the
power draw per Rx-DSP is approximately 1.5 W. The flexibility in configuration, coding, and
data output allow for a wide range of receiver setups. In addition, the AD6620 is designed
to allow for sample synchronization across chips, and the Rx-DSP boards are designed to
allow the sample clocks and RSPs to be synchronized as well, using short (< 10 cm) jumper
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wires which pass the clock and AD6620 synchronization lines between boards. This allows
for the development of multi-board setups for wave-polarization measurements and direction
finding.

2.3 Nomenclature

Each individual deployment of Rx-DSP hardware requires custom hardware for input refine-
ment, power, command input, and data output. For ease of referral, each Rx-DSP system
may be referred to as an Autonomous Rx-DSP Cluster (ARC), with a prefix signifying
current data collection intent. The current set of prefixes are arrayed below:

1. P - Polarization

2. F - Fine Structure

3. M - Multi-Band

4. I - Imaging/Direction-Finding

5. S - Spectrum Analyzing

The other element which is generally different in each ARC is the firmware loaded by the
TMS320C542 processor.

2.4 Firmware Overview

The limited RAM on the TMS320C542 processor is shared between loaded programs and
data, requiring careful management of program size and data storage. The programs used
are all hand-coded in TI DSP Assembly, except for the FFT module, which is based on code
from the TI DSP C Library. The default mode upon power-up has the DSP load its program
code from the onboard PROM and then commence execution.

The program code developed at Dartmouth for rocket and ground-based application is mod-
ular, but all implementations follow a general structure outlined in Figure 2.3. After ini-
tializing the C542 and AD6620 hardware, the AD6620 acquisition is started, and data is
loaded into RAM by the C542. For continuous high-speed data acquisition, the AD6620
may be left ‘on’; however, when only discrete data blocks are required, power usage can be
cut significantly by halting acquisition between blocks.

Once the data is in RAM, any number of processing steps can apply, limited only by available
RAM and processing time. In the simplest case the data is untouched. In the most complex
case currently coded, 1024-word FFTs are performed on incoming data. For most cases,
the data is next encapsulated in a synchronization framework, which includes sync words,
sampling-specification headers, and frame counters. The processed data is next prepared for
output.
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Figure 2.3: A diagram depicting a generalized program flow for the Rx-DSP assembly code.
Dashed lines indicate command/control flow, while solid lines include data as well. Color
backgrounds show which parts of the code run at the given clock rates, with FIFOs and
wait cycles allowing for asynchronous operation. The two callout boxes show modularized
routines in the codebase, some, all, or none of which may be used by a given ARC.
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Data handling for output varies widely, depending on final destination, DSP setup, and
output hardware. To output to the high-speed serial or parallel systems, data is merely
copied into the output FIFO and then read out via rocket telemetry or PC USB hardware.
For output involving the C542 chip’s built-in peripherals, various preprocessing steps may
be required, including downsampling, data subset selection, endianness conversion, and the
addition of extra sync data and headers. The most efficient C542 peripheral for data output
is the Buffered Serial Port, which merely requires that its rotating buffer is periodically filled.
All other peripherals require that each byte be individually preloaded. In either case, data
loading can either be handled by fixed software loops, or can be interrupt driven.

A special case for input and output on the DSP is the software serial console interface. This
link allows a PC with a standard RS-232 serial port to connect to the C542, which can be
switched into the serial console mode via an external toggle. The console allows for single
acquisitions, direct editing of program code in RAM, modifications to the AD6620 setup,
and for the uploading and burning of new PROM files for permanent changes.

2.5 Case Studies

2.5.1 CHARM-II – Rocket-Borne Application

Auroral roar is a natural ionospheric radio emission characterized by a relatively narrow-
banded structure centered at frequencies near multiples of the electron cyclotron frequency.
It is most frequently observed by ground-based radio receivers, but has also been seen by
satellites (James et al. 1974; Benson and Wong 1987; Bale 1999). The intense electrostatic
upper-hybrid waves which are the source of auroral roar have been detected by a sounding
rocket, but hitherto not the auroral roar itself (Samara et al. 2004). Detailed ground-based
studies have shown that many instances of roar are not singular emissions, but rather contain
intricate fine structures visible on high-resolution frequency-time plots (LaBelle et al. 1995;
Shepherd et al. 1998b). Further studies have determined that the lowest harmonic of roar
seen on the ground (2 fce) is left-hand elliptically polarized with respect to the local magnetic
field (Shepherd et al. 1997), while there have been observations of higher harmonics being
either left or right-hand polarized (Sato et al. 2012). It is theorized that roar originates
as upper-hybrid plasma waves above the ionospheric ‘F peak’, converting through linear or
nonlinear processes into propagating electromagnetic waves (Shepherd et al. 1998a; Yoon
et al. 2000; Ye et al. 2007), and the HIBAR and Porcupine sounding rockets may have
encountered regions of such plasma waves (Carlson et al. 1987).

The Correlation of High-Frequency and Auroral Roar Measurements (CHARM-II) auroral
sounding rocket carried the second successful deployment of the Rx-DSP hardware. On the
CHARM-I mission the Rx-DSPs returned approximately 1-2 minutes of data from exposed,
partially deployed electric-field probes, before these probes sheared off due to catastrophic
payload failure. The CHARM-II mission was launched from the Poker Flat Research Range
near Fairbanks, AK, at 9:49 UT/22:46 MLT on 16 February 2010, reaching an apogee of
802 km. The payload carried a two-board FP-ARC, each receiver digitizing the differential
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Figure 2.4: Power spectra of Rx-DSP data from CHARM II, recombined to yield left- and
right-circularly polarized powers. The line of power with decreasing frequency seen in the
righthand plot is an interference line of unknown origin which exists through much of the
flight, and has been seen on other flights.

voltage between two 2.5 cm spherical aluminum probes, with the two probe sets positioned
perpendicular to each other in the plane orthogonal to the rocket’s spin axis, which was
oriented parallel to the geomagnetic field. The Rx-DSPs were in a simple downsampling
mode, adding short headers and outputting through the high-speed telemetry FIFO and
LVDS serial link. The data rate was set to maximally utilize two S-band telemetry links,
transmitting downsampled data in a 333 kHz band centered at 2.67 MHz. As the payload
nominally had its spin axis aligned with the Earth’s magnetic field, B, the Rx-DSPs in this
configuration effectively yielded a picture of the projection of electric-field wave activity onto
the plane perpendicular to B within the designated band.

The CHARM-II FP-ARC yielded the first in-situ observation of auroral roar with both high
time resolution and polarization data. Figure 2.4 shows spectrograms over a 298 to 330 kHz
band from 771 to 777 seconds after launch, corresponding to 548 to 536 km altitude on the
downleg of the flight. The color scale represents the power of righthand circularly polarized
signals (a) and lefthand circularly polarized signals (b), with polarizations being with respect
to B.

Figure 2.4 was generated using a technique described by LaBelle and Treumann (1992),
adapted from Kodera et al. (1977). Given time series data corresponding to two perpen-
dicular, transverse components of a field, as from the measured X and Y components from
the Rx-DSPs, a spectral power can be estimated for lefthand and righthand circular wave
polarization by recombining the complex Fast Fourier Transforms (FFT) of the time series,
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according to
FFTL = FFTX + ı×FFTY ,

and FFTR = FFTX − ı×FFTY .

For the CHARM II data, the two perpendicular quadrature signals are detected in situ, and
transmitted to ground via payload telemetry systems. In post-flight processing, the data
is FFTed, and then recombined to yield the estimated left and righthand powers shown in
Figure 2.4.

Figure 2.4 clearly establishes that the observed waves are lefthand polarized. Not only does
this confirm the ground-level observations of Shepherd et al. (1997), it expands upon it, as
the high time and frequency resolution makes it clear that the individual fine structures
are all lefthand polarized. Sato et al. (2015) have performed a similar analysis for ground-
level 4 fce roar emissions. The lefthand polarization of these waves is consistent with various
generation theories, especially those put forth by Yoon et al. (2000).

2.5.2 South Pole Station – Ground-Based Application

South Pole Station (SPS) lies on the Antarctic Plateau thousands of kilometers from com-
mercial and other broadcast activities associated with population centers. As a result, the
station is very favorable for studies of radio emissions of natural origin, and hosts a variety
of radio receivers at ELF to HF frequencies, complemented by other geophysical diagnostics
such as all-sky cameras, photometers, and flux-gate magnetometers. Significant observations
at VLF (Martin 1960; Chevalier et al. 2007), LF-MF (LaBelle et al. 2005; Ye et al. 2006; Yan
et al. 2013; Broughton et al. 2014), and HF (Rodger and Rosenberg 1999; Patterson et al.
2001) have been made at the station.

Hence, it was a natural decision to deploy the Rx-DSP to the South Pole. In January 2012
Dartmouth installed a PF-ARC at SPS, consisting of two Rx-DSP boards wired to perform
synchronized sampling. Two 40 m2 loop antennas perpendicular to each other, supported by a
10 m mast, were constructed about 1 km from the station. Figure 2.5a shows these antennas.
The planes of the loops are perpendicular to the ground and to each other, providing highest
sensitivity to waves coming from overhead, and allowing right- and left-hand polarization to
easily be distinguished from the phase relation between the signals. The ARC, a duplicate
of that shown in Figure 2.5b was programmed for continuous sampling of a 330-kHz band
centered on 515 kHz. Data were offloaded to a PC through the Rx-DSP parallel LVDS link
via a pair of QuickUSB high-speed USB data acquisition modules, and stored on an array of
2 TB hard drives. Spectral and cross-spectral analysis of the signals on the Linux computer
determined power and polarization of all signals exceeding the noise level. All computer
hardware as well as the ARC were housed in an insulated box as in Figure 2.5c, designed to
retain waste heat, keeping them within their operating temperature range after installation
in the unheated V8 science vault at SPS.

Figure 2.6 shows spectrograms recorded by this ARC on two days in 2013: July 8 and
August 2. In both cases, five minutes of data from one of the two signals are shown, and
the data come from within 1.5 hours of magnetic midnight, which occurs at 03:35 UT at
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Figure 2.5: Photos of the various components of the South Pole Station PF-ARC. Top left
shows the crossed-loop antenna with a 30 ft mast, and the pre-amplifier at the base. Top
right shows the receiver box, data-acquisition PC, and various other equipment within an
insulated box (covered when in operation). Bottom shows a lab-bench photo of a PF-ARC,
with two vertically stacked, sample-synchronized Rx-DSP boards and adjoined QuickUSB
breakout boards on the right side.
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Figure 2.6: Results from the PF-ARC at South Pole Station. The upper spectrogram
shows fine structures in signals which appear similar to Auroral Kilometric Radiation, while
the lower plot shows an example of auroral hiss, for comparison.

South Pole. In both spectrograms, sharp decreases in the signal power spectral density near
the band edges show the effectiveness of the digital filtering in the RX-DSP which defines
the bandwidth. Despite the remoteness of South Pole Station, activities at the station lead
to strong interference lines, most prominently at 450-460 kHz and 640-650 kHz in each
spectrogram and somewhat more weakly at 570-580 kHz and 420-430 kHz.

However, between these interference lines, both spectrograms show evidence of natural radio
emissions of auroral origin. The bottom panel, from July 8, 2013, shows a phenomenon
called auroral hiss (Makita 1979; Sazhin et al. 1993; LaBelle and Treumann 2002). The high
resolution Rx-DSP data show that at LF the hiss consists of impulsive emissions appearing
as vertical lines on the spectrogram.

The top panel, from August 2, 2013, shows a phenomenon called ‘AKR-like emissions’ (La-
Belle and Anderson 2011; LaBelle et al. 2015). This phenomenon is characterized by com-
plicated fine frequency structure consisting of rising and falling tones with typical slopes of
hundreds of Hz per second. These features qualitatively resemble those observed in outgoing
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X-mode auroral kilometric radiation (AKR) detected with satellite-borne receivers at great
distances from Earth (Gurnett and Anderson 1981). As pointed out by LaBelle et al. (2015),
the strong resemblance between this phenomenon and AKR, combined with the stark differ-
ences between it and the auroral hiss shown in the top panel of Figure 2.6, forms a powerful
argument for a connection between the ground-level AKR-like emissions and the outgoing
AKR observed in space.

Due to the success of these observations, further experiments are planned with the Rx-DSP
at South Pole. For example, in Summer-Fall 2014 and Summer 2015, the South Pole ARC
was operated during anticipated conjunctions between it and Cluster satellites, with the
Cluster wave instrument tuned to the same frequency band, in hopes of detecting identical
fine structure in ground and in space. Furthermore, as described above, an S-ARC which can
perform live spectrum analysis is being installed in Automatic Geophysical Observatories.
These autonomous digital receivers in the low-noise Antarctic environment show promise to
make important advances in understanding radio waves of auroral origin.

2.5.3 Sondrestrom Research Facility – Ground-Based Application

The Sondrestrom Research Facility lies on the southwest coast of Greenland near Kanger-
lussuaq, at 66.99◦ N 309.06◦ E and is home to numerous instruments for researching Earth’s
upper atmosphere. These include an incoherent scatter radar, allsky imagers, riometers,
magnetometers, and various radio receivers. The MI-ARC at this site consists of a trio of
sample-synchronized Rx-DSPs. Input to these comes from five loop antennae: one reference,
two situated 50 m from this along lines perpendicular to each other, and two more at 400
m from reference along the same lines. The antennas are arrayed in a small valley approx-
imately 1 km from the station. The three-board MI-ARC is installed in an unheated vault
next to the reference antenna, with the receiver itself in a heated, insulated box. The only
connection from the vault to the station is a single coaxial cable, which carries both the
serial digital output of the ARC, and DC voltage that powers the ARC. The entire array is
calibrated at installation and after any major system changes or repairs, through observation
of analog reference signals with known strengths and physical source positions.

The ARC triggers relays to switch between the 50 m and 400 m antenna pairs when digitizing
signals above and below 1 MHz, respectively. The DSPs are set for discrete sampling of 750
kHz bands, with the receivers rotating through a set of four center frequencies (475, 1225,
1975, and 2725 kHz) approximately once per second. The data are offloaded through the
buffered serial port, interleaved via a hardware serial multiplexer, and then transmitted via
RS-232 serial link to a remote PC.

To compute the direction of arrival for incoming signals, the three resultant data streams are
combined pairwise through cross-spectrum analysis, and averaged over eight 128 or 512-bin
FFT ensembles. Then, given calibration data and knowledge of the antenna layout and cable
lengths, the phase delays of the resulting spectra can be used to calculate the direction of
arrival of high-coherence signals.

Figure 2.7 shows an example of such an analysis for 14 Sep 2013, using signals from 1-1.5
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Figure 2.7: Proof of functionality for the MI-ARC at Sondrestrom Station. To the left,
an elevation vs. azimuth scatter plot (elevation from the horizon, azimuth in degrees from
true north) of high-coherence points for 14 Sep 2013, showing two clear clusters of points.
To the right, we project the azimuthal ranges of the two clusters onto a map, implying that
the clusters correspond to signals transmitted from Europe and North America [Map data
©2015 Google, INEGI].

MHz with coherence greater than 0.95. The scatter plot above shows elevation vs. azimuth
for over 10,000 signals, where elevation is degrees off the horizon and azimuth is degrees
from true north. Note that various instrumental uncertainties yield about a 5% uncertainty
for each point. The accompanying map shows the approximate azimuthal extent of the
two clusters of points. It is clear that the signals detected originate from the directions
of North America and Europe. One curiosity is the extension of North American signals
to lower elevations, which implies sensitivity to more distant signals. This may be due to
atmospheric inhomogeneities or field-of-view anisotropy.

These results establish that the Sondrestrom receiver array/MI-ARC produces accurate di-
rection finding with high time and frequency resolution. The system is resource-efficient,
operating autonomously and remotely via a single 1 km coaxial data/power cable. Further
data collection for science purposes is ongoing.

2.6 Summary

The Rx-DSP is a flexible platform for high-frequency geophysical data acquisition. ARCs are
able to be crafted for autonomous operation in extremely remote regions, for low power draw,
and for a wide variety of data transmission rates and media. In particular, the potential
for on-board data analysis, reduction, selection, and compression allows for optimal use of
low-bandwidth telemetry systems. Additional deployments are already underway, and future
revisions of this platform should allow for even more diverse uses.
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Chapter 3

Wave-Particle Correlation in the
Auroral Ionosphere: CHARM-II

3.1 Introduction

Langmuir waves, also known as electron plasma waves, are one of the most fundamental
properties of a plasma, having been first observed in discharge plasmas in the early days of
plasma physics (Langmuir 1928). They result from the interaction of electron beams with
plasmas and hence are ubiquitous in space plasmas, including, for example, the solar wind,
where they generate radio bursts (Lin et al. 1981), and planetary foreshocks (Gurnett et al.
1981; Filbert and Kellogg 1979) and auroral ionospheres (Kintner et al. 1995; Boehm 1987;
McAdams 1999; Samara 2005), where they mediate energy transfer between the beam and
thermal plasmas. Langmuir waves can generate nonlinear structures of fundamental interest
to plasma physics, as well as linear eigenmode effects in inhomogeneous plasmas (McAdams
et al. 2000; Ergun et al. 2008). Due to their significance and abundance in the space envi-
ronment, Langmuir waves are a subject of current study; particularly with regard to their
eigenmode structures (Malaspina et al. 2012), three-dimensional effects (Malaspina and Er-
gun 2008; Dombrowski et al. 2012), and wave-particle correlations (Ergun et al. 1991b,a;
Muschietti et al. 1994; Kletzing et al. 2005).

Particle correlation experiments have proven to be an effective way to probe wave-particle
interaction physics in space plasmas. A detailed theory of expected results from such in-
struments regarding Langmuir waves is given by Kletzing and Muschietti (2006). The phase
bunching of the electrons in the field of the wave can be considered as a superposition of
two components, a ‘resistive’ component which is in phase with the wave electric field and
represents energy transfer either from wave to particles or vice versa, and a ‘reactive’ compo-
nent which is in quadrature phase with the wave field and is a signature of electrons trapped
in the wave. An early version flown on a sounding rocket in auroral plasma determined a
strong correlation between beam electrons and Langmuir/upper hybrid wave electric fields
over a several hundred second interval (Gough et al. 1990). A wave particle correlation
experiment was flown on the Freja spacecraft (Boehm et al. 1994). Ergun et al. (1998) flew
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Figure 3.1: GOES magnetometer data for 15-18 February 2010. The CHARM-II launch
occurred at 9:49 UT on the 16th, motivated by the preceding steep ∼ 20 nT bay in the field.

a wave-particle correlator on an auroral rocket. The design was very similar to the instru-
ment described below, except that the wave period was divided into only four phase bins
rather than sixteen; the experiment revealed evidence of wave-particle interactions but could
not resolve resistive versus reactive components. Kletzing et al. (2005) reports results from
an instrument nearly identical to the one described below, launched into nighttime aurora.
For various reasons, the experiment measured correlations associated with a relatively small
number of the most intense Langmuir waves encountered, but the results gave a strong
indication of wave trapping of the bunched electrons in those examples.

The success of previous wave-particle correlator experiments inspired a series of rocket
experiments denoted the Correlation of High-Frequency and Auroral Roar Measurements
(CHARM). The first CHARM launch experienced a payload system failure that precluded
any correlator data-taking. A re-flight, CHARM-II, was launched from the Poker Flat Re-
search Range near Fairbanks, AK, at 9:49 UT/22:46 MLT on 16 February 2010, reaching an
apogee of 802 km. The launch, shown in Figure 3.2, was into an active substorm expansion
phase, characterized by a 20 nT bay in the H-component of the magnetic field observed by
GOES 11, as seen in Figure 3.1. The payload carried a Dartmouth High-Frequency Experi-
ment and University of Iowa Correlator, as well as a number of other primary and contextual
instruments. One particularly intense event encountered was reported on by Kletzing et al.
(2011).

This work presents a comprehensive investigation of the entire wave-particle correlator data
set from the CHARM-II mission. Section 3.2 covers the instruments which make up the
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Figure 3.2: A photo of the CHARM-II launch.
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Correlator system, and the form of the returned raw data. Section 3.3 presents the meth-
ods used to identify significant correlation events, a measure which characterizes individual
events, several contrasting events from the final set, and observations regarding the set as
whole. Section 3.4 summarizes these results and offers two theories developed to explain the
observations. Finally, Section 3.5 develops a numerical test-particle simulation to test the
plausibility of these theories.

3.2 Instrumentation

Accurate, in-situ correlation of Langmuir waves and electrons requires three primary pieces:
a wave instrument covering the range of frequencies in which Langmuir waves are expected,
high-speed particle detectors at a range of potentially resonant energies, and the correlation
hardware itself, which processes these data streams, and reduces and returns the desired
statistics.

The Dartmouth High-Frequency Experiment (HFE) detects the potential difference between
two 2.5 cm spherical probes, separated by 30 cm along the payload’s spin axis. This ∆V
signal provides an estimate of the the axial component of the electric-field, which is mainly
parallel to the ambient magnetic field, since the payload is kept field-aligned to within
∼ 10◦ by an attitude control (ACS) system. Active preamplifiers inside each spherical probe
assure that the antenna functions as a double-probe over the entire 0-5 MHz frequency
range. The signal is band-pass filtered to a 100 kHz to 5 MHz band, and regulated by an
Automatic Gain Control (AGC) system to enhance the dynamic range. The AGC control
signal is sampled onboard at 20 kHz and telemetered with other digital data. The regulated
HF signal directly modulates a 5 MHz-bandwidth S-band transmitter, and the resulting
waveform is continuously digitized at the ground telemetry station at 10 MHz, with 12-bit
resolution. This instrument is the latest iteration of a design which has flown on numerous
other rocket campaigns in both E∥ and E⊥ configurations, including HIBAR (Samara et al.
2004), PHAZE II (McAdams et al. 1998), SIERRA, RACE (Samara and LaBelle 2006), and
ACES (Kaeppler et al. 2011).

The University of IowaWave-Particle Correlator similarly has heritage on numerous sounding
rocket missions, including RACE and CHARM, and is described in detail by Kletzing et al.
(2005). The Correlator takes an input waveform from the HFE, and uses it to control a
phase-locked loop (PLL) circuit running at 16 times the frequency. The PLL phase-locks
onto the frequency of the highest-amplitude component of the incoming wave, and restores
to baseline, maintaining a 50% duty cycle. In the case of the HFE signal, the waveform
is strongly dominated by the component at the Langmuir frequency when plasma waves
are unstable. Under this condition, the PLL produces a clean, square-wave version of the
Langmuir wave. This wave is then divided into 16 bins along its phase, and incoming counts
from each of four detectors are sorted into these bins during an integration period—1 ms in
the CHARM 2 case—corresponding to hundreds of wave periods per timeslice.

For the CHARM-II mission, two correlators were flown, each receiving particle data from
four ‘bagel’ particle detectors. These detectors, named for the baked goods they resemble,
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Figure 3.3: The energies of the eight ‘bagel’ particle detectors.

have energy acceptance ranges of 10%, and are characterized by a large geometric factor,
as required for correlation with high-frequency waves (Kletzing and Muschietti 2006). The
detectors are aligned with the rocket’s spin axis, with a 10◦-wide field of view, and thus are
always observing the field-aligned component of incoming particles. The bagel detectors were
tuned to logarithmically spaced energy levels ranging from 200 to 1050 eV (see Figure 3.3).

An additional contextual instrument of interest is the Electrostatic Electron Pitch Angle
Analyzer (EEPAA), a ‘top-hat’ style detector which counts electrons, sorted into 15◦-wide
pitch angle bins and 47 logarithmically spaced energy bins from 15 eV to 15.5 keV, with a
50 ms integration time.

3.3 Data Presentation

Figure 3.4 shows a summary plot of the active period of the CHARM-II flight, with both
time after launch and altitude on the x-axis. On top is a spectrogram of EEPAA data,
with energy on the y-axis, and the log of differential flux as color intensity. Middle is an
HFE spectrogram, with frequency on the y-axis, and color following wave power in decibels.
Finally, the bottom is a plot of log10 of total counts among all eight Bagels. In the EEPAA
data, an inverted-V structure is clear from approximately 610 to 660 s, with a more tenuous
one from 500 to 560 s. The upper cutoff to noise which is near 500 kHz on the left of the HFE
panel is interpreted as the Langmuir frequency ωp, which acts as an upper bound to whistler
modes in ‘underdense’ plasmas, where ωp is less than the cyclotron frequency ωc. From this,
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Figure 3.4: A summary plot of the active period of the CHARM-II flight. Both time after
launch and altitude are shown on the x-axis. Top is a spectrogram of EEPAA particle data,
with energy on the y-axis, and log10 of the differential flux [N * eV/(cm2 * ster * s * eV)]
as color intensity. Middle is an HFE spectrogram, with frequency on the y-axis, and color
following wave power in decibels. Bottom is a plot of log10 of the total counts among all
eight Bagels detectors. Note a clear inverted-V structure at 610 to 660 s, and a more tenuous
one from 500 to 560 s. The upper cutoff to noise near 500 kHz on the left of the HFE panel
is interpreted as the Langmuir frequency ωp.

it is clear that the Langmuir frequency is much lower than the Upper-Hybrid Frequency
(∼ 1.4 MHz), and so easily selected for despite variance in the rocket’s alignment parallel to
the magnetic field. Given the bagel energy range it can also be deduced that the wavelengths
in question will range from approximately 10 to 60 meters. Finally, it is clear that there are
many instances where increased particle counts are accompanied by wave activity near ωp.
The activity near 650 to 660s was a particularly powerful event which saturated all onboard
electric-field instruments at its peak, though the HFE data (and thus the Correlator) was
only unusable for a few milliseconds. The peak Langmuir-wave electric-field intensity was
estimated between 1 to 3 V/m, with the Langmuir frequency near 350 kHz.

The Correlator system returned approximately 489 seconds of valid raw data, providing a
matrix with counts s(t, p,E) at each of 488,869 timeslices (t), 16 phase bins (p = 0...15), and
8 energy levels (E = 1...8). While the phase between particles and the input waveform varies
based on frequency, and due to daisy chaining of the HFE signal between the two Correlators,
a first step taken to aid comparability of timeslices is to shift all bins to the same baseline,
based on the recorded Correlator frequency. While the most direct way of looking at this
data might be to display raw counts vs. phase and time, it is generally more edifying to
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Figure 3.5: An example plot showing (left) the Poisson z-scores (σ) vs. phase and time
for 101 ms of CHARM-II Correlator data. Z-score from -5 to 5 is shown as blue-to-red color
scale, electric field phase is on the y-axis, and time (in relative ms) on the x-axis. Note that
while a high-|σ|, multi-timeslice event is clearly visible in the middle timeslices, many more
timeslices are insignificant. In the left line plot, the σ values for the central timeslice are
shown, along with the base (unity amplitude) functions for an I/Q Resistive/Reactive fit,
while in the right line plot they are shown with the fit amplitudes and their sum. The fit is
reasonable, as shown by the r2 value.

examine the Poisson z-score for the data,

σ(t, p,E) =
s(t, p,E)− s̄(t,E)√

s̄(t,E)
,

where s̄ is the mean particle count of the timeslice, s̄ = 1
16Σps(t, p,E). This is a measure of

particle over- or under-density in a given bin, with respect to the mean for that timeslice.
This analysis yields plots as in Figure 3.5 (left), showing z-scores for 101 timeslices, with
time on the x-axis, electric field wave phase on the y-axis (with each timeslice shifted such
that the zero phases are aligned), and z-score shown as color.

While Figure 3.5 shows significant timeslices, it also shows large regions of low significance
and noise. Likewise, perusal of the complete set of timeslices, F, makes clear that many
timeslices can be discarded due to a lack of significance and/or natural and instrumental
interference, and indeed each timeslice can be classified by Correlator telemetry as ‘locked’
or not, and less than 15% of the data set has both Correlators locked. In addition, a timeslice
cannot be considered reliable merely from the presence of a lock state at that timeslice, and
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this says nothing about the presence of interesting activity at that time. With so much
data, manual inspection was not a practical or desirable method to identify reliable lock or
significance, so an automated algorithm for event identification was developed.

The reduction analysis is motivated by an expectation of how significant wave-particle corre-
lations will manifest themselves in the data: as a sine wave in the phase bins, with a quarter
of the bins having a statistical excess of counts, and a quarter having a deficit. The pattern
arises because of the bunching of the particles in the electric field of the Langmuir waves to
which the PLL is locked.

The first step towards reduction of the Correlator data to identify discrete ‘events’ is, as
shown in Figure 3.6, re-binning the 16 raw data phase bins p (orange) into four reduced
phase bins p′ (color coded by p′),

s′(t, p′,E) = ∑
n=0...3

s(t,4p′+n,E),

in order to emphasize the expected pattern of a quarter of the bins having over and under-
dense counts. The re-binning was done four times (q = 1...4, depicted as individual columns
of p′ bins), shifted by one raw bin for each, to cover all possible patterns that might result
from a wave-particle correlation event,

s′q(t, p′,E) = ∑
n=0...3

s(t,4p′+n+q,E),

and the z-score,
σ′

q(t, p′,E) =
s′(t, p′,E)− s̄√

s̄
,

was then calculated for each of these reduced timeslices.

To account for events which span multiple timeslices, two ‘doublet’ and one ‘triplet’ sets were
constructed at each timeslice, acting as additional arrays of timeslices (the large divisions in
Figure 3.6). For these, the means and the counts in each reduced phrase bin were integrated
in time over the two or three raw timeslices, with the doublet sets defined as

s′q,t2b(t, p′,E) = ∑
τ=t−1,t

s′q(t, p′,E) and s′q,t2 f (t, p′,E) = ∑
τ=t,t+1

s′q(t, p′,E),

and the triplet
s′q,t3(t, p′,E) = ∑

τ=t−1,t,t+1

s′q(t, p′,E),

i.e. the doublets integrate either the timeslice prior or after, and the triplet both. All three
sets then have their associated σ′

q,t2b, σ′
q,t2 f , and σ′

q,t3. Thus, the process yields four total
σ′ arrays over the four q values, times four timeslice arrays (singlet, doublets, triplet), or
sixteen total arrays.

Finally, as a criterion to identify timeslices with interesting events, we find the global min-
imum and maximum σ′ over the sixteen arrays at each timeslice. The difference between
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Figure 3.6: A map of the rebinning done at each timeslice to the raw correlator counts.
Each large group is a time integration (singlet, doublets, triplet), and each of those contains
four shifted rebinnings from the original 16 correlator bins of s(t, p,E) (shown in orange), to
the 4 bins of s′q(t, p′,E) (shown in other colors, grouped by p′).
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that min and max, ∆, is then a scalar measure of how well a given timeslice matches the
expected signature of a wave-particle correlation event.

Initially, a simple global threshold was used to find potential events, resulting in hundreds
of identified timeslices; however, thorough investigation of these revealed many false pos-
itives among these sets, including many events which were disqualified after examination
of diagnostic and contextual data. Figure 3.7 shows the two major factors which lead to
disqualifying timeslices. In the second plot from the bottom, a powerful interfering signal
can be seen in the raw HFE waveform data, at a cadence of about 15 µs. This signal, origi-
nating on the rocket payload, is frequently seen in the HFE data throughout the flight, and
in some cases is the highest-amplitude component of the waveform. While the Correlator
filters out such a low frequency, its presence is often correlated with the second disqualifying
factor: a dubious recorded PLL lock frequency. Visible as the solid white line overlaying the
HFE spectrogram in the bottom plot, the lock frequency can either be unstable (i.e. not
properly locked), or set to unrealistically high or low values compared to by-eye evaluation
of the Langmuir cutoff (dashed black overlaying line). In either case, this drastically reduces
confidence in the correlator phase binning correctness, and motivates the discarding of such
events.

The large number of false identifications in the initial run also revealed that the ∆-threshold
needs to be different for each bagel detector. With these issues in mind, the event identi-
fication algorithm was altered to iteratively optimize the ∆ threshold for each bagel. Sub-
sequently, manual screening was applied based on the considerations above. The 820 and
1050 eV bagels had no qualifying timeslices. Figure 3.8 shows an overview of the final set
S of thresholded, hand-screened events, as x-marks at a given bagel and time, overlaid on a
20-bin histogram. From the histogram it is clear that majority of the events are in a tight
cluster near 652 seconds, coincident with the strong event at the end of the major inverted-V
structure seen in Figure 3.4. Two longer clusters of events are centered near 490 and 610
seconds. The per-bagel set sizes are shown in the table inset in the upper left of Figure 3.8,
showing that the majority of the events were at 260 and 630 eV, with 12 and 23 events,
respectively.

Linear analysis of the interactions of Langmuir wave packets with electrons has shown that
the perturbation of the electron distribution function can be broken into two components:
the ‘resistive’ component of trapped particles which oscillate in-phase with the electric field
of the Langmuir wave, or 180 degrees out of phase, and the ‘reactive’ component which
oscillate 90 or 270 degrees out of phase (Kletzing and Muschietti 2006). A strong resistive
component is an indicator of wave-particle energy exchange, leading to wave growth or
damping, while the reactive phase is associated with particle trapping. The summation of
these two components will tend to have a sinusoidal form when either component shows
significant activity, and it is this form that the event-identification method focused on.

To look at the Correlator data in a comparable manner, we fit the correlator timeslices to a
quadrature function vs. bin number p,

−I sin
(
(p− p0)∗

π
8

)
−Qcos

(
(p− p0)∗

π
8

)
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Figure 3.7: An example of plots used to hand-screen events. From the top, the plots show
max(σ) and min(σ), a counts vs bagel & time spectrogram, the logarithm of raw counts for
a single bagel (with PLL lock/no-lock status displayed at the bottom, as an X for ‘lock’),
two timescales of raw HFE waveforms, and an HFE spectrogram with PLL lock frequency
(white, solid) and hand-picked Langmuir frequency (black, dashed) overlaid. This event was
discarded because it shows both a wildly fluctuating lock frequency with only sporadic ‘lock’,
and strong periodic interference of unknown origin at approximately 15 µs cadence.
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Figure 3.8: An overview of the final event set S vs. time for the whole flight, with the
per-bagel totals in the table inset top left. Individual events are displayed as x-marks on
lines corresponding to bagels on the left vertical axis. Overlaid on this is a histogram of
events vs. time, corresponding to event/bin counts on the right vertical axis.
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Figure 3.9: On the left, for each bagel, the ratio of ⟨
√

I2+Q2⟩S/⟨
√

I2+Q2⟩F, showing that
the events in S show significantly more reactive/resistive activity than seen in the general
flight. On the right, a plot showing the resistive/reactive power ratios, as log10 |I/Q|, for all
of S, showing some variance, and resistive activity in a majority of events.

optimizing I and Q to best fit the z-scores. The negative signs and p0 are determined by
calibration data relating the electric-field phase to the bins. After performing this type
of fit on all timeslices, the coefficients I and Q are then magnitudes of the In-phase and
Quadrature signals, i.e. the resistive and reactive linear components. An example set of fits
are shown in the line plots on the right of Figure 3.5, with bins on the y-axis (aligned to
the left σ plot)—in both line plots, the black line is the σ values for the center timeslice.
In the left plot, the solid blue line is the calibrated electric field, corresponding to I, the
resistive component, and the dashed red line is reactive Q component. The right plot shows
fitted forms, with blue and red the fitted, separate I and Q, and the dot-dashed magenta line
their sum (i.e. the actual fit function). For this timeslice, the r2 goodness-of-fit is ∼ 0.906,
showing a reasonable fit, and with I ∼ 0.3 and Q ∼−3.1 this event appears to be dominated
by the reactive component.

Figure 3.9 shows diagnostics of this fitting. The plot on the left has the per-bagel ratios of
the mean magnitudes I and Q when taken over only S, compared to the mean magnitude for
all of F. From this it’s clear that this form of analysis does a reasonable job of characterizing
events, though it is worth noting that it yields enough false positives and negatives to make
it less useful than the above-outlined method for event identification. The right plot shows
the log of the magnitude of the resistive-to-reactive power ratio, log10 |I/Q|, for S, revealing
significant variance, and that a majority of events are more resistive.

Figure 3.10 displays several events of interest from S. Each shows, from the top, 1 second of
contextual data from the EEPAA, a spectrogram of the total counts of each bagel vs. bagel
energy, the values of I, Q, and

√
I2+Q2, and σ vs. wave phase.

Considering the top left stack of Figure 3.10, which shows data from an event identified in
the 260 eV bagel’s data, we see some evidence of higher-energy beams in the EEPAA data
leading up to the event, but nothing significant during it. The bagel spectrogram shows
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Figure 3.10: Four example events from the final, ∆-thresholded, hand-screened set S,
with 1 second of EEPAA/top-hat particle detector data on top, for context, followed by a
spectrogram of bagel total counts vs. energy, a line plot of reactive/resistive fit values, and
a σ vs. wave phase plot. Note the presence of multi-timeslice events in the σ data, as well
as short-lived narrow-band beam features in the bagel spectrogram, the presence of different
‘red over blue’ and ‘blue over red’ regions in close temporal proximity, and the behavior of
I and Q during these events.

44



sporadic, short-timescale (2-5 ms) beams in this bagel alone. The central timeslice in the σ
plot is the event which passed the thresholding and hand-screening, identifiable as a vertical
bar with strong blue bins in the top half, and strong red bins in the bottom half, showing
the characteristics which were selected for by the thresholding process. There are several
other timeslices around this event which show similar signals, or signals with red bins over
blue bins, and it is clear that the resistive component of our I/Q fit is differentiating between
the red-over-blue and blue-over-red cases. It also appears that the stronger beams show a
relation to I, with negative-I events preceding beams, and positive-I following.

In the other plots of Figure 3.10, we see that while there are several cases of timewise-longer
events, the majority are single-timeslice (1 ms) events as in the top left, a trend that holds
throughout S. The top-right stack shows extremely low counts on the EEPAA for unknown
reasons. While only the lower-right stack shows a clearly distinct beam, the pattern does
appear to hold that a negative I comes before or during a density increase, while a positive
I correlates with a density decrease.

Figure 3.11 highlights the event previously presented by Kletzing et al. (2011), which covers a
larger time and energy range. This figure shows the same parameters as those in Figure 3.10,
but I/Q and σ plots are shown for the 200 to 630 eV bagels. The EEPAA data shows
clear evidence of a dispersive beam appearing at or slightly before this event, lasting for
approximately 200 ms, and the bagel spectrogram and σ plots also appear to show this at
finer timescales. For this event, both I and Q show strong responses, and I appears to show
the same association with the density gradient at a given bagel.

Finally, Figure 3.12 shows a set of events which take place over a similar time scale to those in
Figure 3.11. Evidence for dispersion is less clear here, especially given the large gap between
the 260 eV and 630 eV bagels in which events are visible. However, in each of these examples
I displays the same relation to the beam as observed in Figures 3.10 and 3.11; that is, that
a negative I is associated with a density increase, and vice versa.

Figure 3.13 shows scatter plots of I and Q values versus two selected parameters, the temporal
gradient of the electron beam flux ∇nB, inferred from the bagel detectors (upper row), and the
temporal gradient in the RMS HFE waveform ∇ < w > (lower row). The points are colored
according to their r2 goodness-of-fit value from the reactive/resistive fitting. The upper left
panel demonstrates from this statistical approach the correlation between the I value and the
beam gradient which has been illustrated by multiple examples in Figures 3.10 and 3.12. A
clear trend is evident whereby negative I values correspond to positive beam flux gradients,
and vice versa. A linear regression to these points returns a t-statistic value of -6.97 with a
p-value of 4× 10−9. The other panels of Figure 3.13 show that there is no pattern evident
between the Q value and ∇nB, or between the I or Q values and ∇<w>. Linear regressions of
these sets all have small t-statistics, and p-values ≥ 0.15, strongly suggesting that the I-∇nB
relationship is the only significant one of those examined. Table 3.1 summarizes additional
statistical tests performed on the data, showing that a Kolmogorov-Smirnov test finds a
significant difference between the ∇nB < 0 and ∇nB > 0 distributions of I, and that I and
∇nB are the only significantly correlated measures.

Additional by-eye comparisons were made between the I/Q responses and high-cadence
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Figure 3.11: A single-event summary, showing bagel spectrogram (top left), EEPAA/top
hat particle detector context (top right), and I/Q values (left column) and z-scores (right
column) for each bagel. Note clear evidence of a dispersive beam passing through the 390
to 260 eV energy range, and the strong response in I and Q.

Table 3.1
Statistical tests on the Figure 3.13 scatter plots.

I-∇nB Q-∇nB I-∇<w> Q-∇<w>
s p s p s p s p

Lin Regression -6.97 4.0×10−9 2.26 0.027 -0.36 0.72 1.27 0.21
K-S Test 1 2.8×10−8 0 0.23 0 0.54 0 0.36
X-Correlation -0.68 7.8×10−9 0.24 0.062 -0.05 0.69 0.19 0.15

These statistics all evaluate relations from I and Q to ∇nB and ∇ < w >. The ‘s’
heading is general, referring to the significant output of the given test: from top to
bottom, the t-statistic, null-hypothesis rejection, and correlation coefficient.
In all tests, note the extremely low p-value of the I-∇nB relation, compared to the
others.
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Figure 3.12: A single-event summary, bagel spectrogram (top left), EEPAA/top hat par-
ticle detector context (top right), and I/Q values (left column) and z-scores (right column)
for each bagel. Note that while the EEPAA shows evidence of larger-timescale dispersive
beams at higher energies, the same pattern does not seem to hold at the bagel energies.
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Figure 3.13: Scatter plots of bagel count gradients (top row) and HFE wave power gradients
vs. I (reactive, left column) and Q (resistive) fit values, with color as the r2 goodness-of-fit
value. Note the clear relations in the I-to-count gradient (i.e. resonant electron density
gradient) plot, and the lack of any relation in the wave power plots.

payload data streams. In particular, the Langmuir frequency—as judged by finding the
whistler-mode cutoff on HFE spectrograms—was closely examined, but showed no obvious
short-timeframe reactions in relation to I or Q changes. The I-∇nB relation to-date remains
the only relation seen.

3.4 Discussion

The above shows that the Correlator system has observed 57 potential wave-particle corre-
lation events, after thresholding for significance and hand-screening to remove interference
and potentially bad timeslices. An analysis of the reactive and resistive components of the
Correlator event timeslices reveals a relation between a positive ∇nB at a given bagel energy
level, as in the case of an electron beam appearing at that energy level, and negative values of
I for coincident Correlator events, and a similar relation between a negative ∇nB and positive
I. Given the calibration of the Correlators, the positive half of the electric-field waveform
corresponds to a field pointing towards the bagels, and thus electrons being accelerated away
from them. Thus, the observed relation is consistent with energy going from the beam to
the wave field during a beam density increase, and the inverse for a density decrease. The
lack of evidence for a relation between the HFE power and I and Q is curious, given prior
observations by Kletzing et al. (2005) of such a relation on the RACE mission. It is possible
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that the extreme wave power during the majority of the events in S may mask such an effect,
particularly given that the amplitude modulation typical of bursty Langmuir waves is also
not prevalent in the CHARM-II HFE data.

There are at least two relatively simple explanations for the pattern of correlations observed
between in-phase wave particle correlation phase and the gradient in the beam flux. The first
is motivated by the clear evidence for a dispersive beam in the event illustrated in Figure 3.11.
In fact, this type of dispersive beam is the normal pattern for parallel electron beams in so-
called Alfvénic aurora, in which the beams are accelerated by Alfvén waves at altitudes well
above the rocket, and undergo dispersion as they propagate to lower altitudes, with fast
electrons outrunning slower ones (Kletzing and Hu 2001; Chen et al. 2005). Figure 3.14
shows a schematic of the situation, as such a dispersed beam passes by a low-altitude rocket
payload. The beam energy decreases with time from left to right, and as shown, the energy
range of an appropriate fixed-energy particle detector will shift from lying below the peak
energy of the beam to lying above the peak energy. In the former case the detected energy
corresponds to the condition d f/dv∥ > 0, which is destabilizing for Langmuir waves, and
the latter case corresponds to d f/dv∥ < 0 which is stabilizing. Under the former condition
one expects waves resonant to the detector’s energy to be growing, extracting energy from
the beam, which would correspond to the negative values of the in-phase component of the
electron-electric field correlation. Under the latter condition, the opposite energy flow would
be expected, corresponding to wave damping at the detector energy. The expected signature
in the phase of the electron bunching is exactly as observed.

The Figure 3.12 event is a case where the explanation given above falls short. While there
is evidence in the EEPAA data of dispersion at higher energies, the alternating patterns in
the σ data are difficult to explain, as is the large energy gap between the two bagels which
show a signal. An additional theory does not exclude effects from the above behavior, but
rather focuses on the beam appearance and disappearance at a small region of energy and
pitch-angle space. The two populations involved in this theory are the ‘warm’ background
electrons which are a degraded secondary population associated with a beam, and the beam
population itself. Depicted in Figure 3.15, the bagels observe a slice of the incoming particle
distribution along the parallel axis—as a beam appears, the highest-energy particles will

Figure 3.14: A cartoon showing the ‘dispersive beam’ explanation for the relation seen
between I and Q and the particle count gradient. As time passes (left to right), the bagel
detector’s first sees the positive-slope region of the Maxwellian beam distribution, and then
later a negative-slope region. Thus a beam passing downward through a bagel’s energy range
will see resonant wave growth, followed by enhanced damping.
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Figure 3.15: A cartoon showing a more in-depth explanation for the relation seen between
I and ∇ne. As a beam appears, the high-energy particles are the earliest to arrive, leading
to an exaggerated positive slope and wave growth (left). The remainder of the particles
and distribution relaxation then yield a plateau in middle times. Finally, when the beam
turns off at the source, the high-energy particles are the first to disappear, and in the right
configuration may yield an exaggerated negative slope, enhancing wave damping (right).

arrive first, and are likely to create a positive-slope region and wave growth. However, as
the beam turns off, it is also possible, depending on the energies of the two populations, that
an enhanced negative slope will appear as the higher-energy particles disappear first. This
enhanced negative slope can then lead to enhanced damping in a narrow energy region. The
presence of short-lived beam features in the top-left and bottom-right plots of Figure 3.10,
and their temporal relation to the nearby correlator events, is compelling evidence supporting
this theory.

Langmuir wave growth during an increase in the number of electrons at or near the res-
onant energy is generally expected because of the resultant instability, whether due to a
beam moving into an energy range, or simply appearing at that energy. While subsequent
damping is also expected, an impulsive enhancement of damping concurrent with the beam’s
disappearance, is, on the other hand, not an immediately obvious causal relationship.

Finally, in a high field, it is expected that unstable distributions will relax extremely swiftly,
leaving mostly trapped, reactive particles to be observed; thus, the degree of resistive activity
evident in the ratios on the right of Figure 3.9 is unexpected. These observations, and the
fact that many of the events are narrow in time, many in a single timeslice, may suggest
further structure at even shorter timescales.

A numerical analysis can confirm interpretations of the observed Langmuir wave growth and
damping—and hence the phase of the in-phase wave-particle correlation for both positive and
negative temporal gradients in the electron beam flux. It could also potentially allow probing
of activity at shorter timescales. Towards this end, a method was developed to simulate the
evolution of the electron distribution function, and thus the reduced distribution function
and Langmuir wave growth rate, as an electron beam propagates through a vertical distance
of approximately 5000 km in a converging magnetic field, with parameters close to those of
the auroral ionosphere.
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3.5 Simulation

The aim is to simulate a minimal-complexity environment that is sufficient to probe the
questions at hand: does an electron beam with reasonable characteristics, and which shows
significant Langmuir wave growth upon its appearance, also show enhanced wave damping
as it fades? Can we say anything about the short-timescale behavior of the wave growth
rate?

We shall define a ‘reasonable beam’ as originating with a Maxwellian distribution at a realistic
altitude, and traveling through a magnetic field with an Earth-like mirror ratio. A similar
analysis is performed by Arnoldy et al. (1999), and simpler methods such as one using a
guiding-center approximation might suffice. However, interesting effects may be evident in
this case and in broader applications, if detailed environmental attributes are taken into
account, such as electric fields and agryotropic distributions. We therefore choose to develop
a complex, flexible—and computationally intensive—test particle simulation system. Its
development on and application to this case shall use simple, gryotropic magneto-kinetic
parameters, with no inter-particle interaction or wave-particle scattering.

Following a numerical analog to the analytical method of Cairns (1987), we note Liouville’s
equation governs the evolution of a distribution function over time, and with no wave-particle
or inter-particle scattering, we can simply write

f (x̄, v̄, t) = f (x̄′, v̄′, t ′),

i.e. that the value of the distribution function at a source phase-space region (x̄′, v̄′) at time
t ′ is the same for the related region (x̄, v̄) at time t. The test-particle simulation is used to
relate the primed and unprimed regions, by creating a lookup table of particle travel times
T(E,α′) for a range of source energies E and pitch angles α. These test particles are then
treated as centers of regions in phase space, and are used to ‘carry’, in time T, values of the
source distribution function down to a corresponding region (E,α) at the observation point.

In this analysis, z is taken to be positive, downward, field-aligned coordinate, with z = 0
corresponding to the beam generation altitude. In order to only simulate particles which
will arrive at our ‘detection point’ at (x = y = 0,z = −5000 km) we use a deterministic
(i.e. time-reversible) simulation method, and originate our test particles at the detection
point with an upward velocity, watching for them to cross a target plane at z = 0. The
velocities can then be reversed for the later downgoing analysis. The ‘Boris Method’ is
used—a standard, time-reversible particle pusher (Boris 1970; Birdsall and Langdon 2005).
This method separates the effects of the electric and magnetic forces, dividing them into
a half-impulse from any background electric field, followed by a rotation according to the
magnetic field, and then another electric half-impulse.

Careful testing of energy conservation led to setting a unitless timestep of 0.01. The base of
the time system is the electron cyclotron frequency, and so this is equivalent to each timestep
moving each particle a hundredth of an orbit. For the input parameters used, this yielded a
worst-case energy loss of 0.06% over the full length of the simulation.
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Figure 3.16: The 31 test-particle simulation launch-energy levels. Linearly spaced in
velocity.

To allow a realistic amount of time/space for mixing of particles of different energies and
pitch angles, a distance of 5000 km is used, corresponding to the distance from the bottom of
the electron acceleration region to the ionospheric detection point. The background electric
field is assumed zero, and the magnetic field is rotationally symmetric around x = y = 0,
defined as

B̄ =− zr
L2

r̂+
1+ z2

L2
ẑ =− xz

L2
x̂− yz

L2
ŷ+

1+ z2

L2
ẑ,

with L a scaling variable determined by our desired mirror ratio and target distance. For
the following simulation, the mirror ratio was set to 5.

In order to fully cover the range of energies detected by the Correlator, particles were
launched at the 31 energies plotted in Figure 3.16, linearly spaced in velocity, with en-
ergies ranging from 25 to 1225 eV. At each energy, particles were launched in a range of 41
pitch angles, with an angular spacing of 3π/256. Because of the rotational symmetry of the
simulation imposed by gyromotion, it is only necessary to launch particles at one azimuthal
angle—the results can then be rotated to fill a velocity-space hemisphere at the detection
point. As we would like our hemisphere segments to sweep out constant solid angles, we
require that, for pitch angle α, the particle rotates to the integer number of azimuthal angles
ϕ which most closely yield ∆ϕ = ∆Ω

sin(α)∆α , where ∆Ω is the solid angle, herein set to 0.001
steradians.

The simulation code was implemented in MATLAB, manually fragmented into 64 shards,
and run in approximately five weeks on the Dartmouth Discovery cluster. Due to the finite
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Figure 3.17: Various diagnostics of the resultant travel times for the simulated test-
particles. Note that the energy and pitch angle in the lower row are the launch values
at the detection point (high magnetic field).

timesteps, which are unlikely to land precisely on z = 0, interpolation was required to find
exact crossing parameters. To enable this, the final 1000 timesteps for each particle were
saved (with the very last step having z > 0), and gyro-orbit equations were fit to these, from
which accurate final z = 0 position, velocity, and travel times come forthwith. All unitless
values were then interpreted via inter-defined base values: B0 = 50 microtesla, t0 =∼ 714 ns,
r0 =∼ 0.337 m, and v0 = 0.00989 c, corresponding to 25 eV.

Figure 3.17 shows some basic diagnostics of the output of this simulation, with expected
trends compared to total energy and launch pitch angle. With a table T(E,α), we proceed
to reverse the velocities and launch distributions downward, towards our ‘detector’.

The distribution is imposed at the top (lowest B) on total velocity, |v| (i.e. we assume T∥ = T⊥
and a flat distribution across pitch-angle space), and sampled at the test velocities used in
S. The environment here is assumed to be both homogeneous and large enough that any
generated region of velocity-space at the top will detected at the bottom. Thus, we can
neglect the x and y positions of particles in the simulation.
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We seek to simulate an instrument observing the electrons being emitted effectively con-
tinuously from a source region, which contains a stable background distribution, and has a
strong beam appear, stabilize, and then disappear. Thus, we set a ∆tD period over which the
detector bins incoming particles, and a ∆tS period between source distribution ‘launches’.
To achieve something approaching the appearance of a continuous source, ∆tD should be at
least 10∆tS.

A secondary background distribution serves as the main background to our beam for growth-
rate calculation purposes. It is a localized population, distinct from the much colder, higher-
density ionospheric background, and is composed of a population of degraded beam particles
with a higher density and temperature than the beam population. We define it as a constant
Maxwellian,

f (|v|) = ne (2π)3/2 v3th e−
(

v
2vth

)2
= nbg

(
me

2πkTbg

)3/2

e−
me(v)2
2kTbg = fbg,

where, for a given input temperature, the electron number density nbg is interpolated from
a table of values used by Lotko and Maggs (1981).

The beam is built with a similar form, except for time-varying parameters Tbeam(t), nbeam(t),
and a velocity shift δ(t):

fbeam(|v|, t) = nbeam(t)
(

me

2πkTbeam(t)

)3/2

e−
me(v−δ(t))2
2kTbeam(t) ,

where in practice Tbeam(t) and nbeam(t) are set as fractions of the secondary background
values.

The final distribution is then the sum of these, as in Figure 3.18,

f (v, t) = f (v∥,v⊥,θ, t) = fiono + fbg + fnbeam(t)

where the contribution from the ionospheric background fiono with a 2000 K temperature is
included for completeness, but its effect on the distribution function is vanishingly small at
these high energies.

To dimensionally reduce these towards a parallel distribution function f (v∥), we first sum
over the azimuthal angles. This is not a simple sum: as these are finite cells in velocity-space,
we must weight each angular ‘wedge’ by its accompanying ∆θi, i.e.

f (v∥,v⊥, t) = ∑
i∀θ

f (v∥,v⊥,θi, t)∆θi,

where ∆θi is set by the pitch angle, as in the hemispheric interpolation.

We put off dealing with time until now because the hemispheric interpolation introduces
no time dependence, and so the azimuthal sum has none either. The next step will be
interpolating and reducing away a dimension from our test-particle simulation, so we must
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Figure 3.18: Imposed top distribution in |v|, showing ionospheric background distribution
(green dots), secondary background (blue stars), a beam distribution (red Xs), and final
combined sum (solid black line), with Tiono = 2e3 K, ne ∼ 1.984e9 m−3, Tbg = 2e5 K, nbg =
1.066e6 m−3, Tbeam = 4e4 K, nbeam = 21.32e3 m−3, and δ = 400eV .
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take travel times into consideration beforehand. This is simply a set limitation at detector
timeslice τ, such that the particles we consider are, henceforth, in the set Jτ of particles
whose launch time t0 and travel time tT fulfill t0+ tT <= τ and > τ− tD. There is also an
implicit sum here as we are taking the detector integration into account, and this needs its
own weighting value for f , simply the ratio of the launch time and the integration time, i.e.

f (v∥,v⊥,τ) =
∆tS
∆tD

f (Jτ).

Next, we sum over perpendicular velocities to get a one-dimensional reduced distribution
function, taken from the standard Landau theory for parallel propagation (e.g. Ergun et al.
(1993)). This is slightly complicated by the large number of unique v∥ values. We define a
set of ‘center points’ in v∥ as simply the points along the v⊥ = 0 axis. For each of these v∥,i,
all values of f with v∥ in the range µ∥ =

{
v∥,i−1+v∥,i

2 ,
v∥,i+v∥,i+1

2

}
are summed over v⊥ using a

modification of the trapezoidal rule,

f (v∥,i,τ) = ∑
j∀v⊥;µ∥

(v⊥, j+1− v⊥, j)
f (µ∥,v⊥, j,τ)+ f (µ∥,v⊥, j+1,τ)

2
v⊥, j,

where the factor v⊥, j is the phase-space cell weighting. Figure 3.19 shows a color plot of the
reduced distribution function vs. v∥ and time, as well as several timeslices as the distribution
evolves through the beam-arrival phase.

Now, with a time-integrated one-dimensional reduced distribution function in v∥, we can
calculate growth rates. For a given cold ionospheric background plasma frequency ωp, wave
vector k = k∥, and test plasma frequency ωt , the growth rate is

γ( f (v∥),k,ωp,ωt ,τ) =
(

dε
dω

)−1

Sign[k]
πω2

p

k2ne

[
∂ f (v∥,τ)

∂v∥

]
kv∥=ωt

,

where ε is the dielectric function, approximated as 1− ω2
p

ω2
t
for cold plasma. The derivative

∂ f1/∂v∥ is calculated at a test velocity related to the beam parameters, specifically the closest
v∥ value to δ+Tbeam/kB.

Ideally we would want to set ∆tD to match the Correlator’s timeslices, 1 ms, and to allow
the simulation to ‘settle’ for a long enough time between source changes that even the
slowest particles reach the detector, approximately 14 s per change. However, given our
above guideline that ∆tS ≤ ∆tD/10, this would require storage of prohibitive numbers of
time-overlapping distributions. From Figure 3.17 we know that the majority of particles will
have arrived within 5 seconds, so we use that as our settling time, and only use realistic ∆tD
in special cases. Finally, we relate k values and ωt values via an approximation of the warm
plasma dispersion relation, ω = ωp +

3
2k2v2th/ωp, where vth is the background ionospheric

thermal velocity
√

3kTiono/me.
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Figure 3.19: Reduced distribution function values. Top shows a color plot vs. v∥ and
time, for the entire time span of the test. Below, six timeslices from the beam arrival
period, showing the formation and disappearance of a positive slope. Note that the continued
appearance of low-energy particles near the bottom is the tail of the background distribution.
It has not yet arrived before beam turn-on, but is considered too small to significantly affect
the results.
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Figure 3.20 shows the final results of the simulation: Langmuir wave growth rate γ, versus
k and time (on the horizontal axis), calculated for ωt from approximately 1.00022ωp to
1.0054ωp. The top panel shows the nbeam/nbg at the top, while the two columns are zoomed
into the times at which the bulk of the particles arrive during beam turn-on (left), or depart
with beam shutoff (right).

The top growth-rate panels show γ on the vertical axis, as well as in color scale (blue is
negative, red positive). Both a growth rate spike during the beam arrival and a damping
enhancement during beam departure are clearly visible. This result matches qualitatively the
pattern observed in the phase of the in-phase, resistive component (I) of the wave-particle
correlations during positive and negative gradients in beam flux.

In the lower panels, the color scale is still γ, and the vertical axis is the wavenumber k. The
strongest growth and damping are associated with the long-wavelength modes at k < 0.004,
which is generally expected as shorter-wavelength modes are more heavily damped. Growth
at the long wavelengths is associated with the earliest-arriving, higher-energy particles, with
the later lower-energy arrivals exciting some growth at shorter wavelengths.

The overall timeframe of the growth and damping peaks are of order 100 ms, which is
significantly longer than most of the observed wave-particle correlation events; however,
there is suggestion of shorter-scale time structure in the simulation events, particularly of a
double-peak in the growth rate. To further probe the small-scale structure of these results,
we can modify certain parameters of the distribution-building. Figure 3.21 shows the results
of three such tests: moving the beam by half the inter-energy spacing, both up and down
in energy, as well as removing half of the energies entirely. Motivated by the fact that
realistic electron beams have lifetimes orders of magnitude smaller than the 5 s beams used
in Figure 3.20, Figure 3.22 shows the result of a beam with identical parameters, but a
lifetime of only 100 ms. The general impression of the above tests is that all of the small-
scale structure seen in Figure 3.20 is heavily dependent on various aspects and limitations
of the simulation system itself. Thus, these structures may bear little to no resemblance to
any physical reality—even an approximation of such. Given this, as the simulation stands,
no quantitative conclusions can follow regarding the small-timescale behavior of the growth
rate.

3.6 Conclusions

The CHARM-II sounding rocket successfully carried a wave particle correlator to an apogee
altitude of 802 km in substorm aurora. The correlator instrument locks onto the highest-
amplitude waveform in the 100 kHz to 4 MHz range, ideally the wave at the Langmuir
frequency, and bins incoming electrons at 8 energy levels into 16 phase bins. It returned data
from > 400 seconds of flight time, and after both automated and manual event selection,
57 timeslices containing events of interest were selected and analyzed. Breakdown of the
phase correlation data into resistive and reactive components revealed a striking relationship
between electron beam dynamics and the nature of the wave-particle correlation: whenever
the beam flux at the measured electron energy was increasing with time, the phase of the
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Figure 3.20: Results from the simulation: Langmuir wave growth rate γ, versus k and time
(on the horizontal axis), calculated for ωt from approximately 1.00022ωp to 1.0054ωp. The
top panel shows the nbeam/nbg for at the top, while the two columns are zoomed into the
times at which the bulk of the particles arrive during beam turn-on (left), or depart with
beam shutoff (right). The top growth-rate panels show γ on the vertical axis, as well as in
color scale (blue is negative, red positive), and both a growth rate spike during the beam
arrival and a damping enhancement during beam departure are clearly visible, qualitatively
matching the the pattern observed in the data. In the lower panels, the color scale is still γ,
and the vertical axis is the wavenumber k.
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Figure 3.21: Test inputs and resultant growth rates, showing that much of the small-
timescale structure seen in the growth rate is due to binning effects.
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Figure 3.22: Growth rates resulting from a beam identical to that in Figure 3.20, but
lasting only 1/50th of the time.

61



resistive component of the electron bunching implied energy transfer from the wave field to
the particles, and when the electron beam flux was decreasing, the reverse occurred. This
pattern was repeated for all events, and was particularly clear in several events, including
the largest-amplitude event investigated by Kletzing et al. (2011).

Two related theories to explain this observation have been explored, one invoking the chang-
ing nature of the interactions of the electrons with a given Langmuir wave as the beam
energy decreases, as typically occurs due to dispersion of an auroral electron beam accel-
erated several thousand kilometers above the interaction location; and the other invoking
detailed features of the electron distribution function at ionospheric altitudes, arising when
the electron beam is modulated at higher altitudes. A magneto-kinetic test-particle numer-
ical simulation confirmed that for an electron beam which causes an impulsive increase in
wave growth upon its appearance, its disappearance will be accompanied by an impulsive
enhancement of wave damping within the same frequency range. The results therefore agree
qualitatively with the experimental data from the CHARM-II rocket, though an exactly
simulated quantitative representation has not yet been achieved.

The numerical simulation system developed consists of a flexible, cluster-enabled, node-
independent suite of MATLAB scripts using the Boris Particle Pushing algorithm, modular
background and beam distribution functions with arbitrary time-changing beam profiles, and
adaptive distribution function dimensionality reducer algorithms. This system may be easily
adapted to a multitude of tasks, including significant extensions of the work presented here,
such as including non-uniform beam profiles and considering a broader class of Langmuir
waves (k⊥ ̸= 0) in the growth rate calculations. These and other extensions of the model-
ing may provide more quantitative tests of the time structure or magnitude of correlations
observed in the CHARM-II wave particle correlator data.

Thanks to Dr. Scott Bounds and Dr. Stephen Kaeppler for assistance with the Correlator
data and calibrations, and to Dr. Wayne Scales for providing the original magneto-kinetic
test-particle code on which this simulation system was based.
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Chapter 4

Bursty Langmuir Waves in the Cusp:
TRICE

4.1 Introduction

The electron-beam plasma interaction in the Earth’s auroral ionosphere produces a variety
of plasma waves, and Langmuir waves are among the most intense and ubiquitous of these.
Sounding rocket observations of Langmuir waves in both the night- and dayside aurora show
similar features: the waves occur in bursts with durations from ms to hundreds of ms and
amplitudes from mV/m to hundreds of mV/m (Boehm 1987; McFadden et al. 1986; McAdams
et al. 1999). The bursts are modulated at frequencies ranging from < 1 kHz to > 50 kHz
(Ergun et al. 1991; Bonnell et al. 1997; LaBelle et al. 2010). Satellite data confirm many of
these observations (Gurnett et al. 1981; Beghin et al. 1981; Stasiewicz et al. 1996; Kintner
et al. 1996; Malaspina and Ergun 2008).

The modulation of auroral Langmuir waves has been attributed to mixing of multiple wave
normal modes on the Langmuir surface. Indeed, spectra of the modulated waves show
multiple peaks, extremely well resolved in recent experiments (LaBelle et al. 2010). Linear
(Maggs 1976; Newman et al. 1994b) and nonlinear (Newman et al. 1994a) theory suggests
that the auroral electron beam can excite a range of Langmuir modes, including modes at
oblique angles. There is some controversy, however, about the origin of the interfering waves.
Most papers in the literature favor wave-wave interaction, whereby a primary Langmuir wave,
directly excited by the beam, decays into a second Langmuir wave and a whistler or ion sound
wave, with the observed modulation resulting from the beating of the two Langmuir waves
(Bonnell et al. 1997; Stasiewicz et al. 1996; Lizunov et al. 2001; Khotyaintsev et al. 2001). The
absence of evidence for the low frequency wave in many observations is explained by strong
wave damping. An alternative hypothesis holds that two different Langmuir waves directly
excited by linear processes at slightly different locations in the strongly inhomogeneous
plasma mix to make the observed modulations (LaBelle et al. 2010). In this case, no third
wave would be expected to occur.
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Figure 4.1: Boom and sensor elements of the two complimentary HF electric field experi-
ments flown on the TRICE sounding rockets.

A significant shortcoming of previous rocket experiments lies in the absence of three-dimensional
field data at high frequencies. Recently, however, the availability of higher rocket telemetry
rates and the increasing power of onboard processing enabled the TRICE sounding rocket
mission to include such measurements. In principle, having all three components of the
electric field provides more information about the wave modes comprising the modulated
Langmuir waves. Section 4.2 below describes the TRICE instrumentation; Section 4.3 shows
measured three-dimensional waveforms; and Section 4.4 presents a model for explaining
observed effects. Finally, Section 4.5 expands upon an ambiguity in the model.

4.2 Instrumentation

The Twin Rockets to Investigate Cusp Electrodynamics (TRICE) were launched 10 Dec 2007
at 0900 and 0902 UT, from Andoya, Norway, reaching apogees of 1145 km and 750 km. The
rockets were launched into an active cusp, with poleward-moving auroral forms monitored
with all-sky cameras and multiple radars. Kp was relatively low, with a value of two. The
payload’s spin axis was kept aligned with the background magnetic field, B0, by a NASA
Attitude Control System (ACS), which activated at specific times during the flight, and was
otherwise turned off to minimize interference. Each rocket carried electron and ion detectors,
swept Langmuir probes, low-frequency to DC electric-field probes, magnetometers, and two
complementary high-frequency electric-field instruments: the Dartmouth High-Frequency
Electric-field experiment (HFE), and the NASA GSFC Tri-Axial Electric-Field Wave Detec-
tor (TAEFWD). Figure 4.1 shows the probe configuration for the HF instruments.

The Dartmouth HFE detects the potential difference between two 2.5 cm spherical probes,
separated by 30 cm along the payload’s spin axis. This ∆V signal provides an estimate of the
the axial component of the electric-field, which is mainly parallel to the ambient magnetic
field, given the payload alignment. The signal is band-pass filtered to the 100 kHz to 5
MHz band, and regulated by an Automatic Gain Control (AGC) system to enhance the
dynamic range. The AGC control signal is sampled onboard at 20 kHz and telemetered with
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other digital data. The regulated HF signal directly modulates a 5 MHz-bandwidth S-band
transmitter, and the resulting waveform is continuously digitized at the ground telemetry
station at 10 MHz, with 12-bit resolution. This instrument is the latest iteration of a design
which has flown on numerous rocket campaigns in both E∥ and E⊥ configurations, including
HIBAR (Samara et al. 2004), PHAZE II (McAdams et al. 1998), SIERRA, RACE (Samara
and LaBelle 2006), ACES (Kaeppler et al. 2011), and CHARM II (Kletzing et al. 2012).

The GSFC TAEFWD measures ∆V between three pairs of 2.5 cm probes separated by 47.5
cm (X axis) or 45.5 cm (Y and Z axes) along three orthogonal axes: an X axis perpendicular
to the payload spin axis, and Y and Z axes 45 degrees off of the spin axis, in a plane
perpendicular to X. After filtering to a 4 MHz bandwidth (-3dB bandwidth), the onboard
TAEFWD receiver synchronously digitizes these three signals, as well as the Dartmouth
HFE output signal, at 8 MSps, in 2048-sample snapshots, with the snapshots being gathered
at 15.625 Hz cadence, yielding a 0.4% duty cycle and a 1.92 MBps data stream (after
packing into 10-bit words). The sensitivity level was approximately 80 µV/m, suitable for
measurement of large-amplitude Langmuir waves in the cusp region.

Both payloads were affected by various payload systems failures and instrumental anomalies,
resulting in the complete loss of particle data and interference in other data, including the
generation of extraneous signals; however, the DC magnetometer and both HF electric-field
experiments obtained good data over most of the flight. The HFE data in particular resulted
in a study of cusp Langmuir waves (LaBelle et al. 2010).

Between ACS activations, imperfections in the payload weight distribution caused the pay-
load to begin to misalign from B0, with the spin axis precessing around B0 by an increasing
angle—an effect known as ‘coning’. On TRICE, unlike most flights, this effect could not
be compensated for because the payload attitude data provided by the ACS package was
of low quality due to interference. Over the interval important to this study, the payload
magnetometer showed a variance in B0 from perfect spin-axis alignment of 5-10%, implying
a similar variance in the components of the electric field parallel and perpendicular to B0.

4.3 Observations

As shown by LaBelle et al. (2010), the TRICE high-flyer passed through auroral activity
that generated significant high-frequency waves. Figure 4.2a is a 0 to 2.5 MHz spectrogram
of HFE data from almost the entire flight (100 to 1100 seconds after launch). General
features of this plot include: a 100 kHz rolloff due to the band-pass filter; vertical bands
which are caused by the AGC system raising and lowering the noise floor when the total
signal amplitude changes; additional, cadenced vertical bands at 60 s intervals, which are
instrument-calibration signals injected into the receiver; and multiple horizontal bands, the
strongest of which are due to interference from payload systems. Malfunctions in the particle
instruments also resulted in periods of strong interference 100–400 kHz, e.g. at 710–845 s,
865–880 s, and 900–920 s. These broadly resemble natural auroral hiss, but have been
attributed to arcing in high-voltage components (LaBelle et al. 2010).
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Figure 4.2: Spectrograms of TRICE HF electric field data. a shows a summary of the full
flight covering 100 kHz–2.5 MHz and 100–1100 s, while b and c are HFE and TAEFWD Z′

data covering a 200-800 kHz band from 690 to 780 s, the period of intense activity outlined
in white in a. Black arrows in c indicate times of TAEFWD waveform snapshots examined
in detail.
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Besides the artificial features, the full-flight spectrogram shows signals of natural origin,
such as wave cutoffs of the type which have proven effective for measuring electron plasma
density on previous flights. Two such upper cutoffs can be seen near the beginning of this
flight: a higher-frequency cutoff that emerges from diffuse noise near 2.5 MHz at 150 s and
descends to around 1.2 MHz by 300 s, and a lower-frequency cutoff which is at 750 kHz at
200 s, 200 kHz at 400 s, and remains reasonably well-defined through most of the flight. This
lower-frequency cutoff is interpreted as fpe, which is an upper bound for the whistler mode
during the portion of the flight when fpe < fce, approximately 190 to 900 s. The upper cutoff
is identified as the upper-hybrid frequency fuh =

√
f 2pe + f 2ce, given that fce is approximately

1.2 MHz throughout the flight. The relation between the frequencies of these cutoffs when
they occur together lends confidence to their interpretations as fpe and fce.

The second half of the flight includes lengthy periods of intense wave activity near the fpe
cutoff, and close inspection of waveforms shows that these consist of many bursts of Langmuir
waves. LaBelle et al. (2010) investigated 41 bursts occurring during the 850–861 s interval.
They estimated that over 1000 bursts occurred over the entire flight, with durations from
20 to 250 ms, amplitudes ranging from a few mV/m to nearly 1 V/m, and with modulation
frequencies ranging from less than 1 kHz to over 50 kHz.

The period from 690 to 780 s, outlined in white in Figure 4.2a, showed strong activity on
both HF electric-field instruments. This period is expanded in Figure 4.2b for the HFE,
and Figure 4.2c from the TAEFWD Z′ channel. This channel (and its counterpart Y ′) is
a composite channel derived by taking a linear combination of the real TAEFWD Y and
Z channels, such that Z′ is parallel to the spin axis (and thus the HFE boom), and Y ′ is
orthogonal to Z′ and X. The TAEFWD is somewhat less sensitive than the HFE, and suffers
from some instrumental interference which produces the horizontal bands in Figure 4.2c.
Nevertheless, after eliminating weak bursts which were dominated by interference or showed
no clear modulation, approximately 50 clean TAEFWD snapshots with examples of bursty
Langmuir waves were identified in this time period.

Figure 4.3 shows four selected 3-channel, 2048-sample, 0.256 ms TAEFWD snapshots corre-
sponding to the times indicated by arrows in Figure 4.2c. In each example, the top, middle,
and bottom panels show the X, Y ′, and Z′ components of the HF electric field, respectively.
In all of the waveforms in Figure 4.3, interference appears as discontinuous pulses at ap-
proximately 25 µs intervals; however, for the selected snapshots, the wave amplitude is high
enough that these interference spikes do not affect identification of peaks and nulls in the
wave modulation. All channels were normalized such that the Z′ component derived from
TAEFWD data was equal in magnitude to the axial component of the HF electric field
derived from HFE data, which was in turn converted to absolute electric-field units using
pre-launch HFE calibrations, with an adjustment factor to account for probe–plasma sheath
capacitance.

Figure 4.3a shows waveforms from within a typical burst of cusp Langmuir waves, occurring
at 699.8523 s. The variations in amplitude represent the Langmuir wave modulation which
has been studied by many authors (Bonnell et al. 1997; Stasiewicz et al. 1996; LaBelle et al.
2010). The typical modulation frequency is 10 kHz, or 0.1 ms, so the 0.256 ms duration
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Figure 4.3: Waveform snapshots measured by the TAEFWD, for the four example Lang-
muir wave bursts indicated by arrows in Figure 4.2c. In a and b, the modulations of the
mutually orthogonal components of wave electric field are synchronous. In c and d the
modulation are not synchronous, indicating anisotropy.
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TAEFWD snapshots catch only a small portion of the total modulated wave burst, implying
that these plots show only one or a few modulation cycles out of many that occurred. In this
example, the modulation nulls about 30 µs from the start of the snapshot are synchronous
across all channels, i.e. the modulation of the x, y, and z components of the electric field are
in-phase, and the burst modulation is relatively low-frequency (∼ 15 kHz) and approximately
monochromatic, implying sinusoidal modulation. Figure 4.3b from 768.0764 s shows an
example with faster, multi-frequency modulation. This results in multiple nulls and peaks,
which are variably spaced in time. As in the first example, the modulation is isotropic, i.e.
in-phase on the three components of the wave electric field.

Of the snapshots with clear, high-powered bursts, up to 25% show modulation that appears
to be anisotropic, i.e., the modulation nulls and peaks are not synchronous in the three
electric-field components. Figure 4.3c from 715.2763 s shows an example of this behavior,
with the modulation nulls and peaks coming at different times in different channels: e.g.
a null appears in the X component at 715.276375 s, then in the Y ′ component 20 µs later,
and finally in the Z′ component after another 20 µs. In this case, the modulation appears
similar in the three electric field components, but peaks and nulls are delayed. In other
cases, the modulation of the wave electric field components is not only asynchronous, but
the modulation appears entirely uncorrelated. Figure 4.3d shows an example of this behavior,
from 739.0204 s. Starting from 739.02000 s, the nulls in this snapshot appear at 45 µs, 49.5
µs, 48.5 µs, and 58 µs in the X component, while the only clear nulls in the Y ′ component
are at 39.5 µs and 52.5 µs, and the Z′ component shows no clear nulls.

4.4 Wave Beating and Polarization

These first three-dimensional Langmuir-wave observations from a rocket show that, up to
25% of the time, the modulation of bursty Langmuir waves is anisotropic, meaning that the
nulls and peaks are out of phase in the three electric field components. The superposition of
two or more linearly polarized waves cannot produce such an effect. We postulate that the
anisotropic modulations observed in TRICE high-flyer TAEFWD data result from mixing
of Langmuir/whistler-mode waves with a variety of polarizations. To test the plausibility
of this postulate, we model the superposition of combinations of wave normal modes which
occur in a plasma similar to that encountered by the TRICE high-flyer from 690 to 780 s.

Figure 4.4 shows the result of numerical calculations of wave dispersion characteristics for
high-frequency waves in the ionosphere. This dispersion surface was calculated using J-
WHAMP, a Java-enhanced version of the Waves in Homogeneous Anisotropic Multicompo-
nent Plasmas (WHAMP) program developed by Rönnmark (1982). This code uses numer-
ical approximations of linear Vlasov theory to map out dispersion relations for a given set
of plasma and environmental parameters, returning the basic characteristics of the normal
modes, such as frequency (ω), wavenumber parallel to the ambient magnetic field (k∥), and
wavenumber perpendicular to B (k⊥). It also returns many additional plasma, wave, and
field characteristics, such as Alfvén speed, polarization, Stokes parameters, etc.

The plotted surface in Figure 4.4 is the locus of frequencies and wave vectors corresponding
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Figure 4.4: A dispersion relation for Langmuir and whistler waves in a homogeneous,
magnetized plasma, calculated using the J-WHAMP numerical code. The surface shows
frequency normalized to ωce vs. parallel and perpendicular wavevector (log scales). The
model plasma approximately matches the conditions encountered by the TRICE high-flyer
from 690 to 780 s. Shading of the surface represents the ellipticity of the modes, which range
from left elliptically polarized (blue, not present on this surface) through linear (white) to
right elliptically polarized (red). The dashed line is a example contour of constant frequency.
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to the normal modes of the plasma. The x and y axes represent the logarithm of k⊥ and
k∥, respectively, with each normalized to the electron gyroradius ρe. The vertical axis shows
ω at a given (k⊥, k∥), normalized to the electron cyclotron frequency. The dashed line
shows a constant-frequency contour, just below fpe. The parameters used to generate this
surface were selected to match plasma conditions encountered by the TRICE high-flyer
during the 690 to 780 s period: B0 = 36.850 µT (implying fce = 1031.800 kHz), and a single
particle species set for electron parameters, with n = 2149 cm−3 (implying fpe = 417 kHz)
and an isotropic temperature of 2 eV with no loss cone. The model plasma includes only
thermal (background ionosphere) electrons, because this population is what determines the
real part of the wave dispersion relation, i.e. the frequencies, wave vectors, and polarization
of the normal modes. At these frequencies, ions are a static background, with no significant
effect. A more-complex electron beam model would be required to calculate the imaginary
part of the dispersion relation (e.g. to examine damping rates), but is not required for
our investigation of interference as a function of wave polarization, as an unrealistically
high-density beam would be required to affect the mode structure and polarization. In the
aurora, beam densities are typically 10−3 smaller than the ambient electron density. The
significant J-WHAMP outputs for this analysis are those related to the polarization of normal
modes: electric-field coefficients for generated waves, and the ellipticity parameter, which
is a measure of polarization ranging from -1 (left-circularly polarized) through 0 (linearly
polarized) to +1 (right-circularly polarized). In Figure 4.4, the ellipticity is represented by
the color of the dispersion surface.

The dispersion characteristics of Figure 4.4 are similar to those calculated by André (1985),
specifically his ‘model 2’ for an fpe < fce regime. In the limit k∥ ≳ k⊥ and k∥ρe >> 0.001, the
surface corresponds to Langmuir waves, for which ω ≈ ωpe at intermediate k. Dispersion sets
in at short wavelengths (k∥ρe > 0.1) due to finite electron temperature effects. For k∥ >> k⊥
and long wavelengths in the fpe < fce regime, the Langmuir mode smoothly couples to the
whistler mode, and the surface is better described as ‘Langmuir-whistler modes’ (Layden
et al. 2011). These mode identifications can also be confirmed by the ellipticity: a region
of strong right-elliptical polarization (REP) coincides with the whistler modes, while the
Langmuir wave modes are more linearly polarized (LP).

The observations show modulated Langmuir waves which have been interpreted as wave
beating due to the presence of multiple normal modes with closely spaced frequencies, e.g.
waves near the 500 kHz plasma frequency with frequency separations of approximately 10
kHz. To investigate the intermodulation of such closely spaced normal modes, we can select
normal modes from the Figure 4.4 data: one on a specific frequency contour and one near
that contour (though not necessarily near the first point), representing waves with relatively
similar frequencies. As shown by the dashed line in Figure 4.4, two modes thus selected can
have very close frequencies, but significantly different wave vectors and polarizations. For
example, one wave can be partway down the whistler dispersion curve, in the range of REP
wave modes, and the other can lie in the mostly LP Langmuir wave region.

In order to simulate the superposition of two waves, we start by extracting five parameters—
k⊥, k∥, and the complex Ex, Ey, and Ez coefficients—from the J-WHAMP output, for two
selected normal modes from our dispersion surface. The E coefficients output by J-WHAMP
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Table 4.1
Wave normal mode parameters1.

# ψ (deg) LP fpe/ fce E (x,y,z) k (x/⊥, y, z/∥) Ellip
/REP

a 45 LP 0.369469 (0.376424, 0.002857i, 0.926443) (0.003162, 0, 0.007943) 0.3759
LP 0.366606 (0.391707, 0.003042i, 0.920085) (0.003236, 0, 0.007762) 0.3732

b 45 REP 0.368377 (0.630643, 0.512265i, 0.582988) (0.000158, 0, 0.001380) 0.9093
REP 0.369478 (0.632961, 0.524797i, 0.569165) (0.000148, 0, 0.001380) 0.9176

c 45 LP 0.369469 (0.376424, 0.002857i, 0.926443) (0.003162, 0, 0.007943) 0.3759
REP 0.368377 (0.630642, 0.512265i, 0.582988) (0.000158, 0, 0.001380) 0.9093

d 45 LP 0.366606 (0.391707, 0.003042i, 0.920085) (0.003236, 0, 0.007762) 0.3732
REP 0.369478 (0.632961, 0.524797i, 0.569165) (0.000148, 0, 0.001380) 0.9176

1 Determined from J-WHAMP, and used for the waveform simulations shown in Figure 4.5, along with
the ellipticity for each mode. Model c uses the first waves from model a and model b, and models c
and d differ only in the coordinate system rotation parameter ψ.

76



are normalized such that |E| = 1 mV/m, thus assuring that the interacting waves have
comparable amplitudes, and modulation peaks and nulls should be at their most-pronounced.
The parameters are plugged into the general plane wave equation summed over both waves

E⃗(t) =


(

Ex1e−i(k1 ·⃗x−ωt)+Ex2e−i(k2 ·⃗x−ωt)
)

x̂+(
Ey1e−i(k1 ·⃗x−ωt)+Ey2e−i(k2 ·⃗x−ωt)

)
ŷ+(

Ez1e−i(k1 ·⃗x−ωt)+Ez2e−i(k2 ·⃗x−ωt)
)

ẑ

.

There exists an ambiguity in any dispersion solution which results in a rotational freedom
around the k∥ axis. J-WHAMP defines that k∥ ≡ kz and k⊥ ≡ kx, implying that ky must be
zero—this is not a fully general solution. Section 4.5 examines this k⊥ ambiguity with respect
to J-WHAMP output, and finds that rotations around the z axis can generate some beat
modulation anisotropy, but cannot fully explain the observations. Furthermore, in order to
optimally pick up beating between the x and y components of waves, one must rotate all
beating waves by an angle ϕ = 45 degrees around the z axis. Figure 4.5 shows the results
of the simulations, for four pairs of normal modes from the Langmuir plane, with ϕ = 45
degrees. Using J-WHAMP definitions of the coordinates, the x, y, and z directions roughly
correspond to those in the TAEFWD data, with z parallel to B0, and x and y perpendicular.
Table 4.1 lists the full parameters ( fpe, E, k, and ψ) used for the Figure 4.5 simulations.

Figure 4.5a shows the result of combining two simulated wave modes from the LP Langmuir
dispersion region, at sufficiently short wavelengths for ω ∼ ωpe. As expected, the resulting
modulation occurs with a 330 µs period (1/∆ f => 1/(3 kHz)). In this case, corresponding
to beating of two LP waves, the wave modulation is isotropic, i.e. maxima and minima
coincide in time, similar to the observations shown in Figure 4.3a and b. Figure 4.5b shows
the similar wave modulation that results from superposing two REP waves selected from the
region k∥ ∼ 0.001 and k⊥ < 0.001, which is within the whistler-mode part of the dispersion
surface. The resulting modulation has a 660 µs period, and shows isotropic modulation.

In Figure 4.5c and d, the wave modes pairs from a and b were combined to make two
mixed pairs in order to investigate beating between waves of different polarizations. This
combination of one wave mode from each dispersion region yields modulation anisotropy,
such that the nulls in each component occur at different times. In Figure 4.5c, the null in
the x component is delayed 100 µs from the null in z, and 200 µs from the null in y. This is
qualitatively and quantitatively similar to the effect observed in Figure 4.3c.

A close examination of power spectra of the four waveform snapshots shown in Figure 4.3
lends some support to this interpretation; however, for TRICE TAEFWD data, the frequency
resolution of the spectra is limited due to the short duration of the waveform snapshots.
Figure 4.6 shows power spectra with the horizontal axis zoomed in to a narrow range of
frequencies centered around fpe for a given snapshot. The dashed, black line shows power in
the (Z′) component, which is roughly parallel to B0, while the red line shows ‘perpendicular
power’, which is the sum of the power in the X and Y ′ components. As expected, more power
is generally found in the parallel direction, but anywhere from 5% to 50% of the power near
fpe can be found in the perpendicular direction, depending on snapshot. This implies that
a significant fraction of the waves present lie in the oblique regions of k-space (i.e. away
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a b

c d

Figure 4.5: Simulations of beating between pairs of waves corresponding to Langmuir-
whistler modes calculated with J-WHAMP. In a and b the simulated beating wave modes
have the same polarization, both linearly polarized (a) or both right-elliptically polarized
(b). In c and d one wave mode is used from the set in a, and one from b, so the simulated
waves have different polarizations, one more-linear, one more-elliptical. a and b result in
isotropic modulation of the three field components, whereas c and d result in anisotropies.
Note that all waves have been rotated through 45 degrees so that J-WHAMP-calculated
mode beating will be optimally detected (see Section 4.5).
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a b

c d

Figure 4.6: Power spectra of the TAEFWD waveform snapshots shown in Figure 4.3,
showing power in the parallel (Z′) and perpendicular (X +Y ′) components. The horizontal
axis shows a 200 kHz band centered on fpe for the given snapshot. The significant power
in the perpendicular direction implies that wave modes from a wide region of k-space are
present.
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c d

Figure 4.7: Power spectra of the TAEFWD waveform snapshots shown in Figure 4.3, with
complex Fourier transforms of the transverse components (X and Y ′) recombined to estimate
the degree of right and left circular polarization, as done in Kodera et al. (1977) and LaBelle
et al. (2010). The horizontal axis shows a 200 kHz band centered on fpe for the given
snapshot. While the snapshots are too short to resolve the mode composition in detail, b, c,
and d show hints that both linear and elliptical polarizations contribute to the wave modes
measured near the Langmuir frequency.

from the x and y axes in Figure 4.4), which implies that multiple wave modes with different
polarizations may be present.

A method of spectral analysis of polarization is taken from LaBelle and Treumann (1992),
adapted from Kodera et al. (1977). Given time series data corresponding to two perpen-
dicular, transverse components of the wave electric field, as from the measured X and re-
constructed Y ′ components from the TAEFWD, a spectral power can be estimated for left-
and right-polarized waves by recombining the complex Fast Fourier Transforms (FFT) of
the time series, according to

FFTL = FFTX + iFFTY ,
and FFTR = FFTX − iFFTY .

The relative power ratio |FFTL|2/|FFTR|2 indicates whether the waves at a given frequency
are predominately left, right, or linearly polarized. Figure 4.7 shows the results of this
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analysis, again zoomed in near fpe. While the small number of samples in each snapshot limit
frequency resolution such that the individual peaks for the beating waves are not resolved,
the variations seen in these spectra suggest that mixing of linear and elliptically-polarized
waves is occurring to some degree.

4.5 The k⊥ Ambiguity

The background magnetic field provides a natural axis in a plasma environment, which
motivates a k∥ and k⊥ coordinate system, but with rotational freedom around k∥; i.e., k⊥
can lie anywhere in a plane perpendicular to the background magnetic field. J-WHAMP
resolves this ambiguity by defining k∥ to be along the z axis, k⊥ to be along the x axis, and
ky = 0. While k⃗ does not directly affect the simulations because of the simplification that
x⃗ = 0⃗, information on the wave’s orientation will be a part of the complex E⃗0, and so a more
general simulation will have kx ̸= ky ̸= 0. One can simulate such a state by rotating one of
the component waves in the beat simulations around ẑ. Looking at a general ẑ rotation by
an angle ϕ, and assuming E⃗0 ∈ R so that a 100% right-circularly-polarized wave will have
components (Ex, iEy,Ez), cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

 Ex
iEy
Ez

=

 Ex cosϕ− iEy sinϕ
Ex sinϕ+ iEy cosϕ

Ez

 .

Through judicious use of Euler identities, this can be manipulated into the form eiϕ· f (Ex,Ey,ϕ)
eiϕ·g(Ex,Ey,ϕ)

Ez

∣∣∣∣( f ,g) ∈ C .

This shows that the rotation can be broken down into complex ϕ-dependent amplitudes f
and g times an equal phase shift of the x and y components with respect to z. The fact
that the x and y modulation phases remain synchronous would imply that not all of the
modulation phase anisotropy seen in TAEFWD data can be explained simply by the beating
waves having different wavevectors. In Figure 4.8 this is confirmed in simulation, showing
the change in beat patterns while rotating one of the component waves. While there is some
small shift in the x-y phase alignment, it is insufficient to reproduce, for example, Figure 4.3c,
and can probably be attributed to the small difference in ellipticity between the two chosen
wave modes.

An additional effect of the J-WHAMP alignment of k⊥ arises because the axes in ‘WHAMP-
space’ are effectively probes in the simulated plasma environment. With the axes aligned with
the waves as output by J-WHAMP, the effect is such that any beating caused by interaction
between Ex and Ey cannot be seen, as in Figure 4.9 where no modulation is seen in the y
component, which is qualitatively similar to the lack of modulation in the z component of
Figure 4.3d. As depicted in Figure 4.9, testing of various amounts of rotation of all beating
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Figure 4.8: Simulation of two beating, mostly-circularly polarized waves, with one held
constant and the other rotated through angle ϕ around the z axis. Note that the x and y
modulation phases remain mostly aligned.
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Figure 4.9: Results of rotating the simulation coordinate system through various angles ψ
around the z axis, which is essentially the same as changing the orientation of the virtual
rocket probes. The original orientation with ψ = 0 is entirely insensitive to beating in the
y direction. Rotation through ψ = 90 degrees causes this insensitivity to move to the x
direction, as one would expect with perpendicular axes. Strong beating in all channels with
anisotropic modulation phase can be seen with ψ = 45 degrees.

component waves around the z axis by an angle ψ (effectively rotating the ‘virtual payload’
used to ‘detect’ k and E⃗), yields the conclusion that the payload orientation can have a
significant impact on how well any modulation will be detected, and that ψ = 45 degrees
is the optimal angle to detect beating in our simulations. It is possible that the physical
version of such effects may be seen in the TAEFWD observations, in cases where strong
modulations are seen in only two of three directions, e.g. Figure 4.3d.

4.6 Conclusions

An analysis of a period of strong Langmuir waves observed in cusp aurora by two HF electric
field instruments on the TRICE high-flyer sounding rocket shows many examples of Langmuir
wave bursts modulated at approximately 10 kHz. Previous studies have explained these
observations as the result of beating between waves with very close frequencies near the
Langmuir cutoff.

The unique 3-D data set provided by the NASA GSFC TAEFWD instrument shows that
up to 25% of waveforms selected from the most-intense bursts exhibit anisotropic modula-
tions, i.e. the beat nulls and peaks are not aligned in time across the three perpendicular
electric field components. Anisotropic modulation can arise when superposed wave normal
modes possess differing polarizations, e.g. if a more linearly-polarized Langmuir wave mixes
with a right-elliptically-polarized whistler wave. The J-WHAMP numerical dispersion code
shows that conditions appropriate to the observations can produce such waves, and simula-
tions of such superpositions show that they do produce anisotropic modulation. Analysis of
wavevector ambiguities (Section 4.5) implies that the orientation of the beating waves with
respect to each other and to the instrument probes cannot fully explain the observed effect,
though they can mask it. FFT analysis of the 3-D waveform data, though limited due to the
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short duration of waveform snapshots, suggests that both linear and elliptically-polarized
waves are present near the Langmuir cutoff at these times. Because either proposed origin
of the beating waves could produce waves with multiple polarizations, these findings do not
resolve the origin of the multiple modes. Nevertheless, these observations illustrate how 3-D
measurements can give valuable insight into the nature of wave interactions in the auroral
plasma environment, and suggest that future measurements should have a higher duty cycle,
and perhaps even be continuous.
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Chapter 5

Coda

Waves are pervasive in the auroral ionosphere. Langmuir waves in particular are ubiquitous,
and a carrier of energy from their source regions in the magnetosphere, through and into
the ionosphere. They can be useful as probes of ionospheric density, and for remote sensing.
To fully understand Langmuir waves and make use of them, a thorough understanding of
their generation, propagation, damping, and interactions with particles and other waves is
necessary, and as Langmuir waves are generated in many other space plasma and laboratory
environments, such results can be widely applicable. Several steps have been taken towards
improving knowledge of and theories regarding Langmuir waves.

An autonomous, high-speed, digital signal-processing receiver has been developed and re-
fined. The Dartmouth Rx-DSP is a flexible tool, capable of observing fine frequency-time
structures, polarization, and source direction, and of onboard data reduction. The features
of the Rx-DSP make ARCs built from them ideal for multifaceted studies of Langmuir waves
and related phenomena, both remotely and in-situ. ARCs using these receivers have already
made new science observations in both ground and sounding rocket deployments, including
the first in-situ fine-structure observation of the polarization of auroral roar.

Wave-particle Correlator data from the CHARM-II mission has been presented and analyzed.
This constitutes the first statistical observation from a Langmuir-wave Correlator system,
and a resistive/reactive fit of the data shows a direct relation between the fit coefficients
and electron-beam onset and dissipation. This relation implies that, for a beam which
shows an increased Landau-resonance growth rate during onset, beam dissipation will show
enhanced damping as the beam dissipates. The data also shows comparable levels of resistive
and reactive activity, despite the high electric-field strength which should cause very swift
relaxation of resistive electron populations. A flexible, numerical test-particle simulation has
been developed to test the plausibility of this conclusion, and simulated results appear to be
qualitatively in agreement with theories explaining these observations.

Finally, data from the unique, three-dimensional, high-frequency TAEFWD instrument flown
on the TRICE mission has been presented. This data has allowed an unique examination
of ionospheric bursty Langmuir waves in the cusp, which are theorized to result from wave-
wave interaction. Comparison of the data to simulations of beating waves and results from
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J-WHAMP imply that the interacting waves are some mixture of pure, linearly polarized
Langmuir waves, and elliptically polarized, partially oblique modes from the upper-hybrid
dispersion surface, commonly referred to as whistler-Langmuir hybrid waves.

5.1 Future Work

Future iterations of the Rx-DSP platform may include both hardware and software improve-
ments. The Rx-DSP shows great potential, and has already proven itself as an effective tool,
but a number of design flaws are included in the current version of the hardware—see Chap-
ter A—which need to be addressed in future iterations; as well, newer versions of the core
processors could increase the platform’s basic capabilities, such as digitization bit-depth and
DSP RAM. Potential firmware improvements include lossless or lossy data compression, live
signal detection and center-frequency tracking, and further enhancements of ARC autonomy.

Concurrent with analysis and publication of the TRICE results, significant three-dimensional
wave data from the STEREO spacecraft have been reported on (Malaspina and Ergun 2008).
These have lead to interpretations of bursty Langmuir-wave structure in the solar wind as
eigenmodes of density cavities. Strong perpendicular fields were seen in half of a set of 732
events, implying Langmuir/z-mode waves should generally play a large part in wave decay
processes (Graham and Cairns 2014).

A significant limiter of the high-frequency, three-dimensional measurements afforded by the
TAEFWD receiver as it was flown on the TRICE mission is the single temporospatial obser-
vation point. April 2013 discussions with Dr. Konrad Sauer elucidated that the TRICE
TAEFWD observations are consistent with the appearance of whistler-Langmuir soliton
structures, also known as ‘oscillatons’ (Sauer and Sydora 2001). Confirmation of this and
further detangling of the structure of bursty Langmuir waves in both time and space would
require multiple simultaneous and synchronous TAEFWD-like observations, with a range
of separations from tens to hundreds of meters. Such instrumentation could also yield new
data on generative electron-beam cross-sections, and yield new results on wave propagation
and the non-Langmuir participants in wave-wave interactions.

While the wave-particle Correlator is an effective system as-is, some improvements towards
increasing the high-quality event/mission detection rate are possible. While increased effort
was made during CHARM-II mission integration towards reducing the total payload noise
as seen by the Dartmouth HFE, even more noise reduction, including through the entire
Correlator system, could reduce the interference that led to many manual event screenings.
In addition, while the PLL system is generally effective, some form of additional pre-filtering
or digital processing of the incoming HFE signal might allow for better tracking of the Lang-
muir frequency, yielding even more event confidence. An additional study which could be
undertaken within the CHARM-II dataset is a search for further relations to the resistive
and reactive components; e.g., while CHARM-II did not see large numbers of bursty Lang-
muir waves, a detailed manual examination of frequency splitting and spacings could prove
edifying.
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Both the numerical magneto-kinetic test-particle simulation and the growth rate calculation
codes developed for comparison with Correlator results are extremely flexible tools. The
test-particle simulation is easily expanded to different environments and parameter-spaces,
including the potential to add a background electric field, and to vary travel distances, field
strengths, field shapes, and particle charges and masses. The distributed, node-independent
nature of the test-particle code allows for division of work among as many nodes and cores
as are available, optimizing simulation run times given available resources. The distribution
builder and growth rate calculator are modular, allowing for easy input of alternate top-
side distribution functions with angular dependencies, and for arbitrary time-varying beam
distributions.

An improvement which is desirable but not immediately attainable is for higher time-
resolution growth-rate calculations. The time-overlapping nature of the distribution function
data—as well as the requirement ∆tD/∆tS > 10—swiftly leads to RAM and CPU require-
ments becoming untenable when attempting to push the simulated detector cadence down
towards realistic millisecond values. Further coding effort would be required in order to make
a cluster-deployable version of the growth-rate code stack, enabling detailed examinations
of the millisecond-scale growth rate reactivity.

Characteristics of bursty Langmuir waves in the solar wind and Earth’s foreshock have been
quantitatively explained via Stochastic Growth Theory (Cairns and Robinson 1997; Cairns
et al. 2000; Boshuizen et al. 2001). Key to this theory is the effects of small-scale density
inhomogeneities in the plasma. While the current simulation could theoretically model an
inhomogeneous source region, numerical testing which includes density irregularities during
electron beam transit would require a simulation such as a Particle-in-Cell code.

There are some quickly accessible future realms of study available, making use these codes
with no or minimal revision, even using the existing set of test-particle data. These include
highly dynamic scenarios with multiple beams at multiple energies, beams with time-varying
source energies or limited angular extents, and even beams with varying azimuthal depen-
dence. When the spatial component of the test particle simulation was discarded towards
the end of the test-particle simulation, it equated to an implicit assumption of source-region
homogeneity, but this is known not to be unrealistic. As positions are present and accurate
in the data, they could be utilized for studies involving the spatial extent of Langmuir-wave
generating beams. Augmentations to the growth-rate code stack would allow for examina-
tions of growth rates for obliquely propagating waves. Finally, the test-particle simulation
is capable of runs with background electric fields, higher or lower particle launch energies,
and higher resolution in both energy and pitch angle.

A more accurate simulation of the situation is possible, and as shown any number of the
above factors may contribute to the limiting of any quantitative conclusions. As binning has
been shown to affect the small-timescale growth rate behavior, additional particle runs to
‘fill in’ between the current launch energies may allow for reaching smooth, stable, and more
realistic results. Efficiency improvements and cluster capabilities would also allow for more
realistic beam lifetimes, and potentially probing of behavior at timescales the Correlators
can not yet work at.
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Appendix A

Rx-DSP Notes & Code

Documenting the Rx-DSP codes is a bit of a gong show. The code is slightly modified for
every deployment, there’s kludges nobody even remembers, and in some cases the code is
copyright Texas Instruments, so no bueno. Also, assembly code is absurdly long—just the
AGO code is over 5,000 lines. The full codebase is available at the group’s GitHub repository,
https://github.com/DartmouthSpacePhys.

The following will, instead, attempt to go over the history of the code, the basic parts of the
modern structure, and compilation, and the parts of the code which are Dartmouth-specific
and have unique features. It will also cover a couple of ‘quirks’ that have been found in the
design.

A.1 Original Rocket Code & Errata

The original code still used on rockets was written by J. C. Vandiver, based on Iowa code
for the hardware the Rx-DSPs themselves were based on. It is a single, monolithic code
block that contains the serial monitor code, AD6620 RSP support code, and the main data
acquisition code. It takes data in 65 kiloword frames, triggered by a Major Frame Interrupt
from the telemetry hardware, and is designed to be used in a two-DSP synchronized setup,
in order to get polarization data. It synchronizes the major frames the two DSPs are sending
by using the FIFO-reset line wired between, and herein lies an issue.
Design Flaw: FIFO Reset

The FIFO Reset line, as designed, has a flaw when you try to use it as above, while the
system is ‘live’ (i.e. the RSP is running and the FIFO is filling with data).

The base problem is that no part of the system pays attention to where the RSP is in its
data cycle, or what data has been pulled off of it by the FIFO. If you’re watching the RSP
output, the duty cycle is such that it spends a large time idle, then sends the I word of a
sample, and then the Q word a short—but non-zero—amount of time later. If the FIFO
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Reset line is triggered in that tiny time gap between I and Q, the first word loaded into the
now-empty FIFO will be a Q.

The system is designed to account for this using the least significant bit in the first few words
of data in each block. There is hardware which is toggled on by the c542 which watches the
I/Q line on the RSP output, and sets the bit high or low depending on its I or Q state. In
the rocket code, this hardware is set on for the first 200 words of each major frame. In theory
it should thus be possible to determine the ’I/Q phase’ of a major frame by examining these
LSBs.

Unfortunately, this LSB-override hardware is unreliable: it has been observed on the bench
to yield incorrect results in a small number of cases, for reasons unknown. A possible more-
robust option would be to add hardware which holds the FIFO Reset line high, if the I/Q
line is in Q state, for as long as it remains so, thus preventing a Q from ever being read in
as the first word.

There are two workarounds, one in post-processing, and the other in firmware operation
structure. The post-processing workaround requires that a well-known signal be present in
the data, e.g. a beacon or interference line. Wit this the the data can be closely perused, and
any major frames which appear to be ‘bad’ (i.e. discontinuous with respect to neighboring
frames) can be tagged as such, and processing attempted with the first word dropped.

The firmware workaround is to change the way the RSP is handled. The only state in which
you are guaranteed to start with an I is the startup state, so if you send the RSP into reset
at the end of each major frame, then start it fresh just before a new frame, the problem is
solved...right? Well, sort of. You also have to discard a chunk of data at the very start—the
first few words put out are nonsense, and the filters need a while to kick in. For safety,
current codes discard the first 512 words out of the FIFO.

An added benefit of the firmware workaround is that it slightly lowers the power consumption,
depending on what fraction of time the RSP spends in the idle state.

The rocket firmware is very barebones, simply reading in a major frame, adding a header,
and then putting everything on the output FIFO for telemetry hardware to read out.
Design Quirk: Receive FIFO Clocking Possibly because of its history as a University
of Iowa instrument, the receive FIFO hardware is designed such that it is directly clocked
by the c542 read action—this makes the FIFO status lines unreliable, and requires that the
firmware data-read loop manually time its read operations with nop.

While perfectly valid, this method ties the c542 up for an inordinate amount of time. All
revised deployments of the Rx-DSP have been hardware-modified to have a more traditional
setup, with the FIFO clock line receiving the onboard 40 MHz clock signal. This allows
an idle state or other work to take place, until the FIFO status lines reach a state which
requires/allows for read-out.

The rocket code contains several parts: interrupt vectors, definition of constants, serial
monitor code and utilities, the RSP programming code, and the main acquisition program.
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Some of these shall be covered in a general sense by the following sections, which review
updated versions.

A.2 South Pole Station PF-ARC

The receiver at South Pole Station was the first ground-based deployment of the Rx-DSP,
and is very close to a rocket setup, using an essentially unmodified firmware. The unique
part of the setup lies on the ‘telemetry’ side: each of the Rx-DSPs has its parallel high-speed
output port wired to a Bitwise Systems QuickUSB module, and both modules are connected
to a standard PC running Linux.

The QuickUSB is wired to directly trigger major frames, acting similarly to a rocket teleme-
try system to pull data from the Tx FIFO. The acquisition code was custom written with
assistance from Bitwise, and is available on the repository.

A.3 The Antarctic AGO S-ARC

This section covers codes specifically for an S-ARC designed for use at Antarctic Automatic
Geophysical Observatory (AGO) sites. This design takes 512-sample bursts of data, then
FFTs the data, and transmits the power in decibels through the c542 buffered serial port.

While these codes are purpose-specific, the general forms are the same as for any single-
receiver ARC.

A.3.1 Compilation Support/Toolchain

The codes are compiled and linked from .asm to .obj, and then linked into a single loadable
.hex, using a suite of Texas Instruments command line programs. Below are three support
files for this process: a GNU Makefile, two .cmd files, which are used by the hex500.exe
and lnk500.exe programs as sources of additional options, and a short bootloader code.

The files below are designed for a two-stage initialization process, which uses a bootloader
code for a more recent DSP, the c549. This bootloader allows more advanced memory
management—specifically, having the program code split between multiple memory regions—
which is required to fit the program codes and lookup tables into RAM, leaving enough room
for data storage, FFTing, and transmission.

The lookup tables, which take over 2 kilowords of storage alone, store pre-calculated values
of sine functions for the Hann windowing and FFT functions.

Makefile

1 MAINSRC ?= ago_v1.0.asm
2 CFPREFIX ?= twostage
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3

4 ASMFLAG = -v542
5 LNKFLAG = -w -a -r
6

7 CGTDIR = /cygdrive/c/TI54xCGT/bin
8

9 BASESRC = int_table.asm bl549.asm ad6620.asm tablemax.asm
10 FUNCSRC = $(BASESRC) Cbrev32.asm c512.asm log_10.asm hannwin.asm sercook.asm

cfft_32.asm dpsm.asm scale.asm
11 TABLES = hann_q15.tab
12

13 OBJECTS = $(MAINSRC:.asm=.obj) $(FUNCSRC:.asm=.obj) $(TABLES:.tab=.obj)
14 LSTS = $(FUNCSRC:.asm=.lst) $(MAINSRC:.asm=.lst)
15 ABSS = $(FUNCSRC:.asm=.abs) $(MAINSRC:.asm=.abs)
16

17 OUTMAP = $(MAINSRC:.asm=-link.map)
18 HEXMAP = $(MAINSRC:.asm=-hex.map)
19

20 OUTFILE = $(MAINSRC:.asm=.out)
21 HEXFILE = $(MAINSRC:.asm=.hex)
22

23 .SUFFIXES: .asm .obj .abs .lst .hex .out .tab
24

25 all: $(HEXFILE) $(LSTS)
26

27 $(HEXFILE): $(OUTFILE) $(CFPREFIX)hex.cmd
28 $(CGTDIR)/hex500.exe $(HEXFLAG) $(CFPREFIX)hex.cmd -map $(HEXMAP) -o

$(HEXFILE) -i $(OUTFILE)
29

30 .abs.lst: $(ABSS)
31 $(CGTDIR)/asm500.exe $(ASMFLAG) -x -a $<
32

33 .obj.abs: $(OUTFILE)
34 $(CGTDIR)/abs500.exe $(OUTFILE)
35

36 $(OUTFILE): $(OBJECTS) $(CFPREFIX)link.cmd rx-dsp.h int_table.h ad6620.asm
37 $(CGTDIR)/lnk500.exe $(LNKFLAG) $(CFPREFIX)link.cmd -m $(OUTMAP) -o

$(OUTFILE) $(OBJECTS)
38

39 .tab.obj:
40 $(CGTDIR)/asm500.exe $(ASMFLAG) $< $@
41

42 .asm.obj:
43 $(CGTDIR)/asm500.exe $(ASMFLAG) $< $@
44

45 clean:
46 rm -f $(OBJECTS) $(LSTS) $(ABSS) $(OUTFILE) $(HEXFILE) $(OUTMAP)
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$(HEXMAP)

twostagehex.cmd

1 /* TMS320C542 DSP Board Boot Rom Generation Command File */
2 /* 19 Dec. 2009- updated for c: drive */
3 /* 01 Nov. 2006 */
4 /* Dartmouth MASTER Rx-DSP Boot PROM Generation */
5

6 -memwidth 8
7 -romwidth 8
8 -boot /* Convert all COFF sections to hex */
9 -bootorg 0x0000 /* External data memory boot */

10 -swwsr 0x7FFF
11

12 ROMS {
13 EPROM1: origin=0x0000, length=0x8000, memwidth=8, romwidth=8
14 }
15

16 /*SECTIONS {
17 .bl549 = boot
18 .vectors
19 .cbrev_p
20 .cfft_p
21 .log10_p
22 .smon_p
23 .sintab
24 }*/

twostagelink.cmd

1 /* TMS320C542 DSP Board Boot Rom Linker Command File */
2

3 -e RXDSP_START
4

5 MEMORY {
6 PAGE 0:
7 INTR_TABLE (RWX): origin = 0x0080, length = 0x0080
8 PROG_ANNEX (RIX): origin = 0x0180, length = 0x0680
9 PROG_MAIN (RIX) : origin = 0x0C00, length = 0x1200

10

11 PAGE 1:
12 STACK (RW) : origin = 0x0100, length = 0x0040
13 TEMP_DATA (RW) : origin = 0x0140, length = 0x0040
14 SBUFFER (RW) : origin = 0x0800, length = 0x0400
15 SCALES (RW) : origin = 0x1E00, length = 0x0200
16 DATA (RW) : origin = 0x2000, length = 0x0800

97



17 }
18

19 SECTIONS {
20 .bl549 : load > PROG_ANNEX, align = 64
21 .vectors : load > INTR_TABLE
22 .text : load > (RIX)
23 .cbrev_p : load > (RIX)
24 .cfft_p : load > (RIX)
25 .log10_p : load > (RIX)
26 .smon_p : load > (RIX)
27 .smon_msg : load > (RIX)
28 .sine_tab : load > (RI)
29 .hann_tab : load > (RI)
30 .hann_p : load > (RIX)
31 .sercook_p : load > (RIX)
32 .ad6620 : load > (RIX)
33 .transfer_p : load > (RIX)
34 .dpsm_p : load > (RIX)
35 .scale_p : load > (RIX)
36

37 /* data sections */
38 .bss : > TEMP_DATA
39 .stack_v : > STACK
40 .sbuff_v : > SBUFFER
41 .scale_v : > SCALES
42 .data_v : > DATA
43 }

bl549.asm

1 ;************************************************************
2 ;*** Bootloader software version N0. : 1.0 ***
3 ;*** Last revision date : 10/23/1996 ***
4 ;*** Author : J. Chyan ***
5 ;************************************************************
6 ;** **
7 ;** Boot Loader Program **
8 ;** **
9 ;** This code segment sets up and executes boot loader **

10 ;** code based upon data saved in data memory **
11 ;** **
12 ;** WRITTEN BY: Jason Chyan **
13 ;** DATE: 06/06/96 **
14 ;** **
15 ;** Revision History Omitted **
16 ;************************************************************
17
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18 ;************************************************************
19 ;.title ””bootc54LP
20 ;**********************************************************
21 ; symbol definitions
22 ;**********************************************************
23 .mnolist
24

25 ; Let's use some scratchpad memory! Woo!
26 brs .set 60h ; boot routine select (configuration word)
27 xentry .set 61h ; XPC of entry point
28 entry .set 62h ; entry point
29 hbyte .set 63h ; high byte of –8bit serial word
30 p8word .set 64h ; concatenator for –8bit memory load
31 src .set 65h ; source address
32 dest .set 66h ; destination address (dmov from above)
33 lngth .set 67h ; code length
34 temp0 .set 68h ; temporary register0
35 temp1 .set 69h ; temporary register1
36 temp2 .set 6ah ; temporary register2
37 temp3 .set 6bh ; temporary register3
38 nmintv .set 6ch ; –nonmaskable interrupt vector
39 sp_ifr .set 6dh ; SP IFR temp reg
40 ; MMR definition for c54xlp CPU register
41 ;**
42 ifr .set 01h
43 st0 .set 06h
44 st1 .set 07h
45 AL .set 08h
46 AH .set 09h
47 AG .set 0Ah
48 brc .set 1ah
49 pmst .set 1dh
50 swwsr .set 28h
51 bscr .set 29h
52

53

54 ;* * * * * * * * * * * * * * * * * * * * * * * * * *
55 ;* Bootload from –8bit memory, MS byte first *
56 ;* * * * * * * * * * * * * * * * * * * * * * * * * *
57

58 .global BOOTLOAD_START, blskipskip, xfr08, par08_1, endboot
59 .ref RXDSP_START
60 .sect ".bl549"
61 entry_point .set RXDSP_START
62 eprom_base .set 0x8000
63 bl_loadpoint .set BOOTLOAD_START
64
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65 BOOTLOAD_START
66 par08
67 stm #0x7FFF,swwsr ; set full wait states
68 stm #0x0002,bscr ; bus holder enabled
69 ld #0, DP
70 nop
71 nop
72

73 st #entry_point, @entry
74

75 stm #eprom_base, AR1
76

77 par08_1 ; Main section load loop
78

79 nop
80 ld *ar1+, 8, a ; get address of destination
81 and #0ff00h,a ; force AG, AH to zero for correct calculation
82 ; of the –23bit destination address. (10/14/99 BCT)
83 mvdk *ar1+, ar3 ; ar3 <-- junkbyte.low byte
84 andm #0ffh, @ar3 ; ar3 <-- low byte
85 or @ar3, a ; acc A <-- high byte.low byte
86 stlm a,ar2 ; ar2 <-- destination address
87

88 bc endboot,aeq ; section dest = 0 indicates boot end
89

90 ld *ar1+, 8, a ; get number of 16-bit words
91 and #0xFF00,a ; Clear the guard bits and keep low accum (1.92)
92 mvdk *ar1+, ar3 ; ar3 <-- junkbyte.low byte
93 andm #0ffh, @ar3 ; ar3 <-- low byte
94 or @ar3, a ; acc A <-- high byte.low byte
95

96 cmpm AR2, #bl_loadpoint ; check if our dest is the bootloader load
address

97 bc blskipskip, NTC ; if not, keep loading
98

99 add #1, A ; if it is the bootloader, we want to skip
100 stlm A, AR0 ; this section, i.e. skip A+1 words
101 nop
102 add AR0, A ; but wait,
103 stlm A, AR0 ; A+1 words = 2(A+1) addresses (8-bit prom)
104 nop
105 bd par08_1
106 mar *AR1+0
107 nop
108

109 blskipskip:
110
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111 stlm a, brc ; update block repeat counter register
112 nop
113 rptb xfr08 - 1 ; block repeat to load section data
114

115 ; load program code word
116 ld *ar1+, 8, a ; acc A <-- high byte
117 and #0xFF00, a
118 mvdk *ar1+, ar3 ; ar3 <-- junkbyte.low byte
119 andm #0ffh, @ar3 ; ar3 <-- low byte
120 or @ar3, a ; acc A <-- high byte.low byte
121 stl a, @p8word
122

123 ; recover destination address, pause, then write and increment
124 ldu @ar2, a
125 nop
126 nop
127 writa @p8word
128 add #1, a
129 stlm a, ar2
130

131 xfr08: ; end block repeat
132

133 b par08_1 ; end section loop
134

135 ;**
136 ;* End 549 8-bit EPROM bootloader
137 ;**
138

139 endboot
140 ldu @entry, a ; branch to the entry point
141 nop
142 nop
143 baccd a
144 nop
145 nop

A.3.2 AD6620 RSP Support Code

The code in this file contains functions which initialize, stop (reset), and start the RSP. Not
included are the filter tables which are loaded into memory, though the format is described
in a comment.

ad6620.asm

1 ;```````
2 ; AD6620 setup functions and tables
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3 ;_______
4

5 .mmregs
6 .def rsp_clear, rsp_reset, rsp_init, rsp_mstart, rsp_sstart
7 .include "rx-dsp.h"
8 .sect ".ad6620"
9

10 ;
11 ; rsp_reset, rsp_init, rsp_mstart, rsp_sstart
12 ; shell functions over rsp_setup
13 ;
14

15 rsp_reset:
16 ld #ad6620_soft_reset, A ; Put AD6620 into reset
17 call rsp_setup
18

19 retd
20 nop
21 nop
22

23 rsp_init:
24 ld #ad6620_filter, A ; Set up AD6620 filter
25 call rsp_setup
26

27 retd
28 nop
29 nop
30

31 rsp_mstart:
32 ld #ad6620_master_run, A ; Start digitizing as master
33 call rsp_setup
34

35 retd
36 nop
37 nop
38

39 rsp_sstart:
40 ld #ad6620_slave_run, A ; Start digitizing as slave
41 call rsp_setup
42

43 retd
44 nop
45 nop
46

47 ;
48 ; rsp_clear Function to clear RCF Data RAM between frames
49 ;
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50

51 rsp_clear:
52 stm #100000001b, AR3
53 nop
54 nop
55 portw AR3, (wr_rx+amr) ; Load high and low address registers:
56 stm #0, AR3
57 nop
58 nop
59 portw AR3, (wr_rx+lar) ; write to 0x100, auto-increment
60

61 stm #0xFF-1, BRC
62 nop
63 nop
64 rptb rsp_clear_loop - 1
65

66 portw AR3, (wr_rx+dr4)
67 portw AR3, (wr_rx+dr3)
68 portw AR3, (wr_rx+dr2)
69 portw AR3, (wr_rx+dr1)
70 portw AR3, (wr_rx+dr0)
71 nop
72

73 rsp_clear_loop:
74

75 retd
76 nop
77 nop
78

79 ; Load RSP (AD6620) Registers from Table
80 ;
81 ; 23 Dec 2009 took out most writes to terminal (msgout, dis4hex, asx)
82 ;
83 ; This code was taken directly from the "rspmod" routine used in the
84 ; Dartmouth Monitor. Instead of having the user enter the data words
85 ; or receiving them from a "script" file, this routine looks at a
86 ; table of words in memory, reads them, and transfers them to the
87 ; AD6620. Used to load control bytes and filter coefficients.
88 ;
89 ; Table entry format:
90 ;
91 ; rsp_table:
92 ; .word AmLah, r4r3h, r2r1h, r0xxh;
93 ; .word (more 4-word entries)
94 ; .word 0FFFFh ; End of table
95 ;
96 ; 4 words:
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97 ; AAaah = AD6620 internal address, 0000h to 030Dh,
98 ; or FFFFh to terminate.
99 ; AMR = Ma Address mode register

100 ; LAR = La Lower address register
101 ; r4r3h, r2r1h, r0xxh = data bytes, packed into words, MS, to LS.
102 ; Bottom byte of 3rd word not used (xx). Data is treated a 40
103 ; bits for all AD6620 registers. Not the most compact
104 ; arrangement for storage, but readable- and it can be edited
105 ; directly from monitor scripts.
106 ;
107 ; DR4 = r4
108 ; DR3 = r3
109 ; DR2 = r2
110 ; DR1 = r1
111 ; DR0 = r0
112 ;
113 ; Uses:
114 ; A: Holds table pointer upon entry
115 ; B: Working register
116 ; AR0: I/O address
117 ; AR2: Table index
118 ; AR3: Holds data to send to or read from I/O port
119

120 table_end .set 0FFFFh ; End-of-table definition
121

122 rsp_setup: ; Enter with table starting address in A
123 stlm A,AR2 ; Save to AR2 for later use
124 nop ; Necessary for loop to execute properly (?!&)
125 nop ; Necessary for loop to execute properly (?!&)
126 ; ld #ad6620_msg1,A ; Tell operator what is happening
127 ; call msgout
128

129 rsp_loop:
130 ; ldm AR2,A ; Retrieve table index
131 ; call dis4hex ; Display index of table line
132 ; ld #0020h,A ; Space over on screen
133 ; call asx
134

135 cmpm *AR2,#table_end ; Is this the end of the table?
136 bc rspx,TC ; Return if at end
137

138 ld *AR2+,A ; Get first table word: AD6620 address
139 ld A,B ; Save a copy
140

141 ; call dis4hex ; Display
142

143 ;
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144 ; Transfer RSP register address bytes to
145 ; AD6620 high and low address registers
146 ;
147 sftl A,-8,A ; Shift high byte to low byte
148 and #0003h,A,A ; Mask high byte to 2 LSBs (avoid reserved bits
149 ; and do not auto-increment for now)
150 stlm A,AR3 ; Move to AR3 for portw
151 portw AR3,wr_rx+amr ; Write to high address register
152 ld B,A ; Get RSP register address
153 and #00FFh,A,A ; Mask to low byte only (actually hardware
154 ; only uses bits 7:0 of data bus, should not
155 ; need to mask)
156 stlm A,AR3
157 portw AR3,wr_rx+lar ; Write to low address register
158

159 ; ld #0020h,A ; Space over
160 ; call asx
161

162 ld *AR2+,A ; Get next table word (dr4 and dr3 bytes)
163 ld A,B ; Save a copy
164

165 ; call dis4hex ; Display
166

167 sftl A,-8,A ; Shift high byte to low byte
168 stlm A,AR3 ; AR3 holds output data
169 portw AR3,wr_rx+dr4 ; Store to AD6620 MS data byte register
170

171 ld B,A ; Get copy
172 and #00FFh,A,A ; Mask to low byte only
173 stlm A,AR3
174 portw AR3,wr_rx+dr3
175

176 ; ld #0020h,A ; Space over
177 ; call asx
178

179 ld *AR2+,A ; Get next table word (dr2 and dr1 bytes)
180 ld A,B ; Save a copy
181

182 ; call dis4hex ; Display
183

184 sftl A,-8,A ; Shift high byte to low byte
185 stlm A,AR3
186 portw AR3,wr_rx+dr2
187

188 ld B,A ; Get copy
189 and #00FFh,A,A ; Mask to low byte only
190 stlm A,AR3
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191 portw AR3,wr_rx+dr1
192

193 ; ld #0020h,A ; Space over
194 ; call asx
195

196 ld *AR2+,A ; Get next table word (dr0 in upper byte)
197

198 ; call dis4hex ; Display
199

200 sftl A,-8,A ; Shift high byte to low byte
201 stlm A, AR3 ; Save for subsequent output port write
202 portw AR3,wr_rx+dr0 ; Address for RSP LS data byte
203

204 ; ld #0020h,A ; Space over
205 ; call asx
206 ; ld #000Dh,A ; Output CR
207 ; call asx
208 ; ld #000Ah,A ; LF
209 ; call asx
210

211 b rsp_loop ; Go back for next table entry
212 rspx:
213 ; ld #ad6620_msg2,A
214 ; call msgout
215 ret

A.3.3 Data Processing Functions

Below lies a subset of the data processing functions used by the AGO code. These are the
codes written by in-house, not ones provided in or adapted from the TI DSP library.

scale.asm This file provides three functions: two stages of post-FFT scaling, first before
the square-magnitude function, and then again before the logarithm, and then the descaling
function for post-logarithm.

1 ;```````
2 ; Prescaling functions by Micah P. Dombrowski
3 ;
4 ; _sqmag_prescale
5 ;
6 ; Used on 32-bit complex number array (stored RIRIRI), finds the
7 ; largest possible shift applicable to each RI pair using EXP.
8 ; Assumes a zero return equates to EXP(0), and stores the maximum
9 ; shift. Stores 2*shift in scale factor array.

10 ;
11 ; _log_prescale
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12 ;
13 ; For TI DSP Library Logarithm: normalizes each 32-bit value using
14 ; EXP and NORM, adding shift values to existing values in the save
15 ; array, and cutting to 16-bit output.
16 ;
17 ; _descale
18 ;
19 ; Adjusts logarithmic output based on scale factor array, by
20 ; subtracting scale*log10(2).
21 ;_______
22

23 .mmregs
24

25 ; Stack usage
26 ; 0 = ST1, 1 = ST0, 2 = function return pointer
27 .asg *SP(3), idata
28 .asg *SP(4), odata
29 .asg *SP(5), sdata
30

31 .def _sqmag_prescale, _log_prescale, _descale
32 .sect .scale_p
33

34 ;```````
35 ; _sqmag_prescale
36 ;
37 ; Inputs: N, number of values to scale in Acc,
38 ; Top of Stack: data input address (512x2 words present),
39 ; data output address (512 words free),
40 ; scale save address (512 words free)
41

42 _sqmag_prescale
43

44 ; Set up processor for signed, non-fractional math
45 pshm ST0
46 pshm ST1
47 ssbx CPL
48 rsbx FRCT
49 ssbx SXM
50 ssbx OVM
51 rsbx C16
52 nop
53 nop
54

55 sub #1, A ; BRC = N-1
56 stlm A, BRC
57 stm #16, AR0 ; max shift value
58 mvdk idata, AR2 ; input pointer
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59 mvdk odata, AR3 ; output pointer
60 mvdk sdata, AR4 ; scale array pointer
61

62 rptb sqmag_prescale_loop - 1
63

64 dld *AR2+, A
65 dld *AR2-, B
66 nop
67 nop
68

69 exp A
70 nop
71 ldm T, A
72

73 exp B
74 nop
75 ldm T, B
76

77 min A ; A = min(A,B)
78 nop
79 nop
80

81 sub #4, A ; 4 guard bits
82

83

84 stlm A, T ; re-store to T
85 nop
86 nop
87

88 pshm T ; save T to stack
89

90 dld *AR2+, A
91 dld *AR2+, B
92 nop
93 nop
94

95 norm A ; shift
96 norm B
97

98 .global norm_ovm
99 norm_ovm:

100

101 dst A, *AR3+ ; save data
102 dst B, *AR3+
103

104 ld #0, A ; clear Acc
105 popm AL ; pop the corrected scale factor into low Acc
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106 stl A, 1, *AR4+ ; save with a 1-bit shift (mpy by 2)
107

108 sqmag_prescale_loop:
109

110 popm ST1
111 popm ST0
112

113 retd
114 nop
115 nop
116

117

118 ;```````
119 ; _log_prescale
120 ;
121 ; Inputs: N, number of values to scale in Acc,
122 ; Top of Stack: data input address (512x2 words present),
123 ; data output address (512 words free),
124 ; scale save address (512 words free)
125

126 _log_prescale
127

128 ; Set up processor for fractional, signed math
129 pshm ST0
130 pshm ST1
131 ssbx CPL
132 ssbx FRCT
133 ssbx SXM
134 ssbx OVM
135 rsbx C16
136 nop
137 nop
138

139 sub #1, A ; BRC = N-1
140 stlm A, BRC
141 stm #16, AR0 ; max shift value
142 mvdk idata, AR2 ; input pointer
143 mvdk odata, AR3 ; output pointer
144 mvdk sdata, AR4 ; scale array pointer
145

146 rptb log_prescale_loop - 1
147

148 dld *AR2+, A
149 exp A
150 nop
151

152 ldm T, B ; load T
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153 sub #4, B ; guard bits
154 stlm B, T
155 add *AR4, B ; add any existing scale factor
156 stl B, *AR4+ ; save back to scale array
157 nop
158 nop
159

160 norm A ; shift
161

162 sth A, *AR3+ ; save data
163

164 log_prescale_loop:
165

166 popm ST1
167 popm ST0
168

169 retd
170 nop
171 nop
172

173

174 ;```````
175 ; _descale
176 ;
177 ; Inputs: N, number of input points, in Acc
178 ; Top of Stack: data input address (512x2 words present, Q16.15 format)
179 ; data output address (512 words free, in-place okay)
180 ; scale factor array (512 words present)
181

182 log10o32767 .set 0x783F ; ( log10(32767) * 2^15) >> 3
183 log10o2 .set 0x04D1 ; ( log10(2) * 2^15 ) >> 3
184

185

186 _descale:
187

188 pshm ST0
189 pshm ST1
190 ssbx CPL
191 rsbx FRCT
192 ssbx SXM
193 rsbx OVM
194 rsbx C16
195 nop
196 nop
197

198 sub #1, A ; BRC = N-1
199 stlm A, BRC
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200 mvdk idata, AR2 ; input pointer
201 mvdk odata, AR3 ; output pointer
202 mvdk sdata, AR4 ; scale array pointer
203

204 rptb descale_loop - 1
205

206 ; Docs say log10 outputs Q16.15, but this is misleading,
207 ; format is S IIII IIII IIII IIII FFFF FFFF FFFF FFF
208 dld *AR2+, A
209 sfta A, #-3
210

211 ld #log10o32767, B
212 add B, A
213

214 ld #log10o2, B
215

216 rpt *AR4+
217 sub B, A
218 sfta A, #8
219 sfta A, #8
220 sat A
221

222 sth A, *AR3+
223

224 descale_loop:
225

226 popm ST1
227 popm ST0
228

229 retd
230 nop
231 nop
232

233

234 .end

dpsm.asm This provides a single function, |C2|.

1 ;```````
2 ; Double-precision square magnitude function by Micah P. Dombrowski
3 ;
4 ; Reads n Q.31 numbers arrayed as R[0], I[0], R[1], I[1], ..., R[n-1],
5 ; I[n-1] outputs MSB half of R[0]^2+I[0]^2, R[1]^2+I[1]^2, ...,
6 ; R[n-1]^2+I[n-1]^2 output fills first half of input region.
7 ;
8 ; Inputs: data address in A, number of R/I pairs in B
9

111



10 .mmregs
11 .def _sqmag
12 .sect .dpsm_p
13 _sqmag
14

15 pshm ST0
16 pshm ST1
17 ssbx SXM
18 ssbx FRCT
19 ssbx OVM
20 rsbx C16
21 nop
22 nop
23

24 ; Double-precision square magnitude, saving MSB half of result.
25

26 stm #0, T ; Multiplication Temp register (for mpy)
27 stm #0, BK ; Circuluar addressing modulus (do not want)
28 sub #1, B
29 stlm B, BRC
30 stm #2, AR0 ; Increment (jump to next 32-bit datum)
31 stlm A, AR2 ; Load index
32 stlm A, AR3 ; Load index
33 stlm A, AR4 ; Storage index
34 rptb sqmag_loop - 1
35

36 mpy *AR2+, A ; a = 0 (1)
37 macsu *AR2-, *AR3+, A ; a = RL*RH (1)
38 macsu *AR3-, *AR2, A ; a += RH*RL (1)
39 ld A, -16, A ; a >>= 16 (1)
40 mac *AR2+0%, *AR3+0%, A ; a += RH*RH (1)
41 stm #0, T ; (2)
42 sat A ; (1)
43

44 mpy *AR2+, B ; b = 0 (1)
45 macsu *AR2-, *AR3+, B ; b = IL*IH (1)
46 macsu *AR3-, *AR2, B ; b += IH*IL (1)
47 ld B, -16, B ; b >>= 16 (1)
48 mac *AR2+0%, *AR3+0%, B ; b += IH*IH (1)
49 stm #0, T ; (2)
50 sat B ; (1)
51

52

53 add B, A ; a += b == R^2 + I^2
54 sat A
55 dst A, *AR4+ ; (1)
56
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57 sqmag_loop:
58

59 popm ST1
60 popm ST0
61

62 nop
63 nop
64

65 retd
66 nop
67 nop

tablemax.asm The function provided by this file reduces the final data set by taking the
max between a provided set of indices within the 512-bin FFT. The bins in the table can be
spaced by 1 to have ranges of complete data transferred.

1 ;```````
2 ; Frequency selection and averaging function by
3 ; Nathan Utterback and Micah P. Dombrowski
4 ;
5 ; Inputs: start address of data Acc,
6 ; output address in Bcc
7

8 avg_shift_val .set 3 ; bits to right shift by after summing
9

10 .mmregs
11 .def transfer, transfer_table_sz
12 .sect .transfer_p
13

14 .bss Delta,1,0,0 ; storage for repeat counter
15 .bss nShift,1,0,0 ; storage for shift value
16

17 transfer:
18

19 pshm ST0
20 pshm ST1
21

22 pshm AR6
23

24 stlm A, AR2
25 stlm B, AR3
26 stm transfer_table_start, AR5 ; load the start of the
27 ; table into memory
28 stm transfer_table_end-1, AR0
29

30

31 transfer_sum_loop:
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32

33 ldm AR2, A ; load base address
34 add *AR5+, A ; add offset from table, inc
35 stlm A, AR4 ; store
36

37 ld *AR5-, A ; load next offset, dec
38 sub *AR5+, A ; subtract current offset to get delta, inc
39 sub #1, A
40 stlm A, BRC ; store delta-1 for rpt
41

42 ld #0, B
43 rptb max_loop - 1
44

45 ld *AR4+, A
46 max B
47

48 max_loop:
49

50 stl B, *AR3+ ; save
51

52 cmpr LT, AR5
53 bc transfer_sum_loop, TC ; loop until we finish the table
54

55 popm AR6
56

57 popm ST1
58 popm ST0
59

60 retd
61 nop
62 nop
63

64 transfer_table_start:
65 .word 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105
66

67 .word 113, 114, 115, 116, 117, 118, 119, 120, 121
68 .word 122, 123, 124, 125, 126, 127, 128, 129, 130
69 .word 131, 132, 133, 134, 135, 136, 137, 138, 139
70 .word 140, 141, 142, 143, 144, 145, 146, 147, 148
71 .word 149, 150, 151, 152, 153, 154, 155, 156, 157
72 .word 158, 159, 160, 161, 162, 163, 164, 165
73

74 .word 166, 174, 182, 190, 198, 206, 214, 222, 230
75 .word 238, 246, 254, 262, 270, 278, 286, 294, 302
76 .word 310, 318, 326, 334, 342, 350, 358, 366, 374
77 .word 382, 390, 398, 406, 414, 422, 430, 438, 446
78 .word 454, 462, 470, 478
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79 transfer_table_end:
80

81 transfer_table_sz .set transfer_table_end-transfer_table_start

sercook.asm Finally, this provides a function to change the data into the right form for
serial output.

1 ;```````
2 ; Serial data cooking function by Micah P. Dombrowski
3 ;
4 ; Reads N words containing right-aligned bytes,
5 ; bit reverses, and adds start and stop bits.
6 ;
7 ; Inputs: data address in A, number of bytes in B
8

9

10 .mmregs
11 .def _serial_cook
12 .sect .sercook_p
13 _serial_cook
14

15 sub #1, B
16 stlm B, BRC
17 stlm A, AR0
18 rptb bitrev_loop - 1
19

20 ssbx XF
21

22 ld #1, B ; zero result + stop bit
23

24 ld #001h, A ; load mask
25 and *AR0, A ; mask data
26 or A, 8, B ; OR into result
27 ld #002h, A
28 and *AR0, A
29 or A, 6, B
30 ld #004h, A
31 and *AR0, A
32 or A, 4, B
33 ld #008h, A
34 and *AR0, A
35 or A, 2, B
36 ld #010h, A
37 and *AR0, A
38 or A, 0, B
39 ld #020h, A
40 and *AR0, A
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41 or A, -2, B
42 ld #040h, A
43 and *AR0, A
44 or A, -4, B
45 ld #080h, A
46 and *AR0, A
47 or A, -6, B
48

49 stl B, *AR0+ ; rewrite to serial buffer
50

51 rsbx XF
52

53 bitrev_loop:
54

55 retd
56 nop
57 nop
58

59 .end

A.3.4 S-ARC Main Program Code

The main code which ties all of the above—as well as the windowing, FFT, and log10
functions—together.

1 ;```````
2 ;
3 ; Dartmouth College AGO Rx-DSP Program
4 ;
5 ; Written by: Micah P. Dombrowski and Nathan B. Utterback
6 ; w/ code segments from TI DSP Library
7 ;
8 ;_______
9

10 .mmregs
11 .global ZERO, BMAR, PREG, DBMR, INDX, ARCR, TREG1
12 .global TREG2, CBSR1, CBER1, CBSR2, CBER2
13 .global RXDSP_START
14 .ref _cbrev32, _cfft32_512, _log_10
15 .ref _hann_window, _sqmag, _serial_cook
16 .ref _log_prescale, _sqmag_prescale, _descale
17 .ref rsp_clear, rsp_reset, rsp_init, rsp_mstart, rsp_sstart
18 .ref transfer, transfer_table_sz
19 .global bridge_data, buff_clear_loop
20 .def ago_main, int_nmi
21
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22 .include "rx-dsp.h"
23 .text
24

25 code_version .string "v1.0"
26 band_width .string "0300"
27

28 ; Output constants
29

30 output_shift_n .set 8 ; left shift before 8-bit mask defines
31 header_freq_mask .set 0x0FFF ; bits of 32-bit major frame counter
32 ; that must be zero for a header frame
33

34 ; Run constants
35 fft_scaling .set 0
36 data_n .set 512 ; Size of each FFT (# of IQ pairs)
37 data_discard .set 512 ; words discarded from Rx FIFO pre-data
38 data_minor_sz .set 1 ; acquisitions per half-buffer interrupt
39 fsync_sz .set 4 ; # of serial frame sync bytes
40 ; (should be multiple of 4)
41 abu_buff_sz .set 214 ; size of serial buffer
42 ; (2x major frame size IN BYTES)
43 ; should be set to
44 ; 2*(transfer_table_sz + fsync_sz)
45

46 ; Memory allocations
47 data_addr .usect ".data_v", 0x800, 1, 1
48 scale_addr .usect ".scale_v", 0x200, 1, 1
49 stackres .usect ".stack_v", 0x40, 1, 1
50 abu_buff_loc .usect ".sbuff_v", abu_buff_sz, 1, 1
51 abu_buff_hloc .set abu_buff_loc+abu_buff_sz/2 ; half-way
52

53 ; Memory pointers
54 iq_data .set data_addr ; 512 * 2 words * I/Q
55 fft_data .set data_addr ; 512 * 2 words * Re/Im
56 scale_data .set scale_addr ; 512 words
57 sqmag_data .set data_addr ; 512 * 2 words
58 sqsc_data .set data_addr+2*data_n ; 512 words
59 log_data .set data_addr ; 512 * 2 words
60 power_data .set data_addr ; 512 words
61 ebs_data .set data_addr+data_n ; 512 words
62

63 ; mode flags
64 mode_std_bit .set 0001b ; standard operations
65 mode_dbg_bit .set 0010b ; debug
66

67 mode_std_n .set transfer_table_sz
68 mode_dbg_n .set 512
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69

70 ; Scratchpad RAM usage
71 bridge_count .set scratch
72 minor_count .set scratch+1
73 bspce_save .set scratch+2
74 bridge_size .set scratch+3
75 mode_flag .set scratch+4
76 shb_addr .set scratch+5
77 major_count .set scratch+6 ; two words!
78 nco_freq .set scratch+8 ; two words!
79

80 .bss TempLmem,1*2,0,0 ;temporary dword
81

82

83 RXDSP_START
84 ago_main:
85

86 rsbx XF
87

88 ; Processor setup
89 ssbx INTM ; Disable interrupts
90 stm #(stackres+0x40), SP ; set Stack Pointer
91 stm #npmst,PMST ; Set processor mode/status
92 ; stm #defst0, ST0
93 ; stm #defst1, ST1
94 rsbx SXM ; Suppress sign extension
95 ; rsbx XF
96 nop ; Space for branch to app
97 nop
98

99 appcode:
100 ; stm #0,state ; Clear interrupt routine state
101 stm #0,AR0 ; Clear auxilliary register 0
102

103 portw AR0,wr_disc ; Enable parallel TLM drivers, I_Q out
104 portw AR0,wr_dog ; Strobe watchdog timer
105

106 stm #0,AR0 ; Clear all auxiliary registers
107 stm #0,AR1
108 stm #0,AR2
109 stm #0,AR3
110 stm #0,AR4
111 stm #0,AR5
112 stm #0,AR6
113 stm #0,AR7
114

115 stm #0FFh,IFR ; Clear any pending interrupts

118



116 stm #ntss,TCR ; Stop timer, if running
117

118 ; Main data code start
119 read_init:
120 call rsp_reset
121 nop
122 nop
123 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
124 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
125 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
126 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
127 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
128 portw AR0,wr_rs_rx ; Hardware reset of AD6620 RSP
129 nop
130 nop
131 call rsp_reset
132 call rsp_init
133 call rsp_clear
134 call rsp_mstart
135

136 rpt #4444 ; Let the AD6620 do its first initialization in peace
137 nop
138

139 call rsp_reset
140

141 ; store permanent NCO Frequency
142 ld #0x4420, A
143 stl A, @nco_freq
144 ld #0x01FA, A
145 stl A, @(nco_freq+1)
146

147 portr rs_rx_fifo, AR0 ; Reset RxFIFO - also wired to Slave
148 nop
149 nop
150

151 stm #lsb_sel, AR0 ; Reset acq_seq
152 portw AR0, wr_disc
153 nop
154

155 ; BSP prep
156

157 stm #(bspc_Free+bspc_fsm), BSPC0 ; reset BSP
158 stm #(int_bx), IMR ; unmask serial tx interrupt
159 stm #(bspce_fe+bspce_bxe), BSPCE0 ; 10-bit words,
160 ; enable tx autobuffer
161

162 ; where in the 2 kw of buffer RAM does the transmit buffer start?
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163 stm #(abu_buff_loc-0x800), AXR
164 stm #(abu_buff_sz), BKX ; buffer size
165

166 ; Clear entire serial buffer
167 stm #abu_buff_sz-1, BRC
168 stm #abu_buff_loc, AR4
169 rptb buff_init_loop - 1
170

171 st #0h, *AR4+
172

173 buff_init_loop:
174 .global buff_init_loop, head_ramp, major_loop
175

176 ; Write out header to first buffer half
177

178 stm #abu_buff_loc, AR4
179 ; two-byte frame sync 0xEB90
180 ; stm #(abu_buff_loc+abu_buff_sz/2-2), AR4
181 st #0xFE, *AR4+ ; 4-byte initialization sync
182 st #0x6B, *AR4+
183 st #0x28, *AR4+
184 st #0x40, *AR4+
185

186 stm #file_header, AR0 ; Point to static header words
187 header_loop:
188 ld *AR0+, A ; Get a word, point to next
189 bc header_loop_x, AEQ ; If terminator, end static header
190 stl A, *AR4+ ; Write to serial buffer
191 b header_loop
192 header_loop_x:
193

194 ld #abu_buff_loc, A
195 ld #(abu_buff_sz/2), B
196

197 call _serial_cook
198

199 ; Set initial bspce_save such that the first acquisition will
200 ; write to the second half of the serial buffer
201 st #bspce_xh, @bspce_save
202

203 ; Start BSP transmits
204 ; have to hold fsm bit
205 stm #(bspc_Free + bspc_fsm + bspc_nXrst), BSPC0
206

207 ; rsbx INTM ; global interrupt enable
208

209 ; All Aux Registers are fungible in the main loop: values which must
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210 ; be preserved over time are stored in the scratchpad RAM as defined
211 ; above. Note that only AR6 and AR7 are required to be preserved by
212 ; the DSP Library functions (and most others), all other ARx may be
213 ; modified within function calls.
214

215 ld #0, A
216 dst A, @major_count
217

218 major_loop:
219

220 portr rs_rx_fifo, AR0 ; Reset Rx FIFO - also wired to Slave
221 nop
222 nop
223

224 stm #(acq_seq_out+lsb_sel), AR0 ; send acq_seq, set lsb_sel
225 portw AR0, wr_disc
226

227 call rsp_clear ; clear NCO RAM
228 call rsp_mstart ; and start digitizing
229

230 ;
231 ; Reads
232 ;
233 data_acq_start:
234

235 st #0, @bridge_count ; reset bridged data counter
236 st #0, @minor_count ; set minor frame counter
237

238 ;
239 ; Set wait states for Rx FIFO
240 ;
241 ldm SWWSR, A
242 ld #65535, B
243 xor #7, #swwsr_is, B ; (0b111<<Nset XOR 0d65535) creates bitmask
244 and B, A ; mask out bits of interest
245 or #0, #swwsr_is, A ; (A or Nwait<<Nset) to set Nwait to Nset
246 ; Nwait = 0 means no additional waits
247 stlm A, SWWSR
248

249 ssbx XF
250 rpt #100
251 nop
252 rsbx XF
253

254 .global pre_disc, pre_read
255 pre_disc:
256
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257 ; loop to read and discard first data out of AD6620
258 stm #(data_discard), AR2
259 nop
260 rx_discard_loop:
261 ; read only if rx fifo is nonempty
262 portr rd_disc, AR0
263 nop
264 nop
265 bitf AR0, #rx_efo
266

267 bc discard_fifo_empty, NTC
268 portr rd_rx_out, AR1 ; read data into AR1
269 mar *AR2- ; decrement word counter
270 discard_fifo_empty:
271

272 banz rx_discard_loop, *AR2
273

274

275 ; loop to read data from Rx FIFO into RAM
276 stm #2, AR0
277 stm #iq_data, AR1 ; set address for first data word
278 stm #(data_n*2-1), AR2
279 pre_read:
280 nop
281 rx_read_loop:
282 ; read only if rx fifo is nonempty
283 portr rd_disc, AR3
284 nop
285 nop
286 bitf AR3, #rx_efo
287

288 bc read_fifo_empty, NTC
289

290 portr rd_rx_out, *AR1+
291 st #0, *AR1+ ; zero out second word
292 mar *AR2- ; decrement word counter
293

294 read_fifo_empty:
295

296 banzd rx_read_loop, *AR2
297 nop
298 nop
299

300 ;
301 ; Set wait states for other stuff (full 7)
302 ;
303 ldm SWWSR, A
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304 or #7, #swwsr_is, A ; (A or Nwait<<Nset) to set Nwait to Nset
305 stlm A, SWWSR
306 nop
307 nop
308

309 ssbx XF
310 rpt #50
311 nop
312 rsbx XF
313

314 ;
315 ; End data acquisition, begin data processing
316 ;
317

318 data_process:
319

320

321 .global pre_window
322 pre_window:
323

324 ld #iq_data, A
325 ld #data_n, B
326

327 call _hann_window
328

329 .global pre_bit_rev
330 pre_bit_rev:
331

332 ; Bit reversal
333 stm #data_n, AR0
334 pshm AR0
335 stm #iq_data, AR0
336 pshm AR0
337 ld #iq_data, A
338

339 call _cbrev32
340

341 frame 2
342

343

344 .global pre_fft
345 pre_fft:
346 stm #fft_scaling, AR0
347 pshm AR0
348 ld #fft_data, A
349

350 call _cfft32_512
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351

352 frame 1
353

354

355 .global pre_move
356 pre_move:
357 ; flip things into proper power spectra order (swap halves)
358 ; remove zeroes here, too
359

360 stm #(data_n-1), BRC
361 stm #fft_data, AR2
362 stm #(fft_data + 2*data_n), AR3
363

364 rptb move_loop - 1
365

366 dld *AR2, A
367 dld *AR3, B
368

369 nop
370 nop
371 xc 2, AEQ
372 add #1, A
373 xc 2, BEQ
374 add #1, B
375

376 dst A, *AR3+
377 dst B, *AR2+
378

379 move_loop:
380

381 .global pre_sqscale
382 pre_sqscale:
383

384 stm #scale_addr, AR0 ; scale saves
385 pshm AR0
386 stm #fft_data, AR0 ; output
387 pshm AR0
388 stm #fft_data, AR0 ; input
389 pshm AR0
390 ld #data_n, A ; N
391

392 call _sqmag_prescale
393

394 frame 3 ; free stack
395

396

397 .global pre_abs
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398 pre_abs:
399 ssbx SXM
400 ssbx OVM
401 nop
402 nop
403

404 stm #(2*data_n-1), BRC
405 stm #fft_data, AR0
406 rptb abs_loop - 1
407

408 dld *AR0, A
409 abs A
410 dst A, *AR0+
411

412 abs_loop:
413

414 .global pre_sqmag, pre_log, pre_db
415 pre_sqmag:
416 ; |FFT|^2
417 ld #sqmag_data, A
418 ld #data_n, B
419

420 call _sqmag
421

422 .global pre_logps
423 pre_logps:
424

425 stm #scale_data, AR0 ; scale saves
426 pshm AR0
427 stm #sqsc_data, AR0 ; output
428 pshm AR0
429 stm #sqmag_data, AR0 ; input
430 pshm AR0
431 ld #data_n, A ; N
432

433 call _log_prescale
434

435 frame 3
436

437

438 pre_scale:
439

440

441 pre_log:
442 ; log_10(|FFT|^2) (outputs 32-bit Q16.15)
443

444 stm #data_n, AR0
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445 pshm AR0
446 stm #log_data, AR0 ; write to beginning of data buffer
447 pshm AR0
448 ld #sqsc_data, A ; read from halfway point of data buffer
449

450 call _log_10
451

452 frame 2
453

454

455 .global pre_descale
456 pre_descale:
457

458 stm #scale_data, AR0 ; scale saves
459 pshm AR0
460 stm #power_data, AR0 ; output
461 pshm AR0
462 stm #log_data, AR0 ; input
463 pshm AR0
464 ld #data_n, A ; N
465

466 call _descale
467

468 frame 3 ; free stack
469

470

471 .global post_descale
472 post_descale:
473 ; multiply by output_scale_factor,
474 ; shift right by output_shift_n, re-store
475

476 pshm ST0
477 pshm ST1
478 ssbx FRCT
479 ssbx SXM
480 ssbx OVM
481 rsbx C16
482

483 ; Scale and shift, save 8-bit data
484

485 stm #data_n-1, BRC
486 stm #power_data, AR0
487 stm #(data_addr + 2*data_n), AR1
488 stm #ebs_data, AR2
489 ; stm #output_scale_factor, T
490 rptb ebs_loop - 1
491
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492 ; mpy *AR0+, A ; multiply by scale factor in T
493 ; sfta A, #0-output_shift_n
494 ; and #0xFF0000, A
495 ; dst A, *AR1+
496

497 ; mpy *AR0+, A ; multiply by scale factor in T
498 ld *AR0+, A
499 sfta A, #0-output_shift_n
500 add #128, A
501 and #0xFF, A
502 stl A, *AR2+
503 ; dadd output_shift_n, A ; shift
504 ; sat A
505 ; and #0xFF, #16, A ; mask to A(23-16)
506 ; sth A, *AR2+ ; store A(23-16)
507

508 ebs_loop:
509

510 nop
511

512 .global dp_end
513 dp_end:
514

515 ; Debug code, writes a 512-byte ramp-up-ramp-down
516 ; stm #data_n/2-1, BRC
517 ; stm #0, AR0
518 ; stm #ebs_data, AR2
519 ; stm #ebs_data+data_n-1, AR3
520 ; rptb dummy_data - 1
521 ;
522 ; mvkd AR0, *AR2+
523 ; mvkd AR0, *AR3-
524 ; mar *AR0+
525 ;
526 ;dummy_data:
527 ; .global dummy_data
528

529 popm ST1
530 popm ST0
531

532 nop
533

534 ;
535 ; End data processing, begin serial data handling
536 ;
537

538 stm #(lsb_sel), AR0
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539 portw AR0, wr_disc
540

541 ; Standard mode (#buff_size bytes) or
542 ; debug mode (#debug_size) depending on trm_28 state.
543 portr rd_disc, AR0 ; Get discrete bits
544

545 ; stm #0, AR0 ; DEBUG !!
546 ; nop
547 ; nop
548

549 bitf AR0, #trm_28 ; Test for high terminal input
550 bc standard_mode, NTC ; If trm_28 is low (NTC), standard
551 ; data settings to #debug_size
552

553 st #mode_dbg_n, @bridge_size
554 st #mode_dbg_bit, @mode_flag
555

556 b debug_mode_skip
557

558 standard_mode:
559

560 st #mode_std_n, @bridge_size
561 st #mode_std_bit, @mode_flag
562

563 debug_mode_skip:
564

565 ; entry point for bridging data transfers
566 ; over multiple serial half-buffers
567 bridge_data:
568 stm #(acq_test2+lsb_sel), AR0 ; send acq_seq, set lsb_sel
569 portw AR0, wr_disc
570

571 nop
572 nop
573 ; Determine serial buffer position
574 ld #abu_buff_loc, A ; load buffer base
575

576 bitf @bspce_save, #bspce_xh ; read XH out of
577 ; stored BSPCE register
578 nop
579 nop
580 bc buff_skip, NTC ; if first half _finished_
581 ; (XH=0, NTC), do nothing
582

583 add #(abu_buff_sz/2), A
584 stm #(acq_test2+acq_test3+lsb_sel), AR0
585 portw AR0, wr_disc
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586

587 buff_skip:
588 nop
589 nop
590 stl A, @shb_addr ; scratch storage for serial half-buffer address
591 nop
592 nop
593

594 abu_first_half:
595 .global abu_first_half
596

597 ssbx INTM
598

599 ; Clear serial buffer half
600 mvdm @shb_addr, AR4
601 nop
602 rpt #(abu_buff_sz/2-1)
603 st #0xFF, *AR4+
604

605 ; reset AR4 for data copy
606 mvdm @shb_addr, AR4
607 nop
608 nop
609

610 abu_fill_start:
611 .global abu_fill_start
612

613 ; two-byte frame sync 0xEB90
614 st #0xEB, *AR4+
615 st #0x90, *AR4+
616

617 ; two-byte infofoop
618 ld @minor_count, A ; byte 1, minor frame number
619 and #0xFF, A
620 stl A, *AR4+
621 dld @major_count, A ; byte 2, major frame number
622 and #0xFF, A, B
623 stl B, *AR4+
624

625 post_sync_write:
626 .global post_sync_write
627

628 ; Transfer in selected data mode
629 bitf @mode_flag, #mode_dbg_bit
630 bc dbg_transfer, TC
631

632 ; In standard mode, check if 8-bit major_count (still in A) == 0,
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633 ; if so, transfer a header instead of data.
634

635 ; Std header: spit out a header frame every 4096th
636 and #header_freq_mask, A
637 bc header_skip, ANEQ ; A != 0, skip header
638

639 call hwrite
640 st #mode_std_n, @bridge_count ; fake it out
641 nop
642 nop
643

644 b end_transfer
645

646 header_skip:
647 ; Std transfer: selected bins in a 1-frame major frame
648 ; transfer selected data to serial buffer
649 ld #ebs_data, A ; input addr in A
650 ldm AR4, B ; output addr in B
651

652 call transfer
653

654 st #mode_std_n, @bridge_count ; fake it out
655

656 b end_transfer
657

658 ; Debug transfer: entire 512-bin fft
659 ; spread over multiple minor frames.
660 dbg_transfer:
661

662 ; copy raw data (words) into serial buffer (bytes)
663 ld #ebs_data, A
664 add @bridge_count, A
665 stlm A, AR2
666

667 mvdm @bridge_size, AR0 ; goal bridge size
668 mvdm @bridge_count, AR1 ; current count
669

670 stm #((abu_buff_sz/2-fsync_sz)-1), BRC
671 rptb rawdata_loop - 1
672

673 ; ld *AR2+, A ; load (data word) to Acc
674 ; and #0xFF, A ; mask to low-byte
675 ; stl A, *AR4+ ; save to serial buffer
676

677 mvdd *AR2+, *AR4+
678

679 mar *AR1+
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680 cmpr LT, AR1 ; If we're not done with a bridged data sequence,
681 nop
682 nop
683 xc 2, NTC
684 rsbx BRAF
685 nop
686 nop
687 nop
688 nop
689 nop
690 nop
691 .global rawdata_loop, dbg_transfer_skip
692 rawdata_loop:
693

694 mvmd AR1, @bridge_count
695 nop
696

697 end_transfer:
698 .global end_transfer
699

700 nop
701

702 serial_transfer_end:
703 .global serial_transfer_end
704 nop
705

706 ; Bit reverse and add start/stop bits
707 ld @shb_addr, A
708 ld #(abu_buff_sz/2), B
709

710 call _serial_cook
711

712 ; rsbx INTM
713

714 addm #1, @minor_count
715

716 ; If a major frame is complete, shut it down
717

718 ; unset acq_seq, keep lsb_sel
719 stm #lsb_sel, AR0
720 portw AR0, wr_disc
721

722 ; Strobe watchdog- once per acquisition
723 stm #0, AR0 ; Data is not used- just the wr_dog strobe
724 portw AR0,wr_dog ; Strobe the watchdog
725

726 ; Stop acquisition, clear interrupts, then idle until an interrupt.
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727 call rsp_reset
728

729 nop
730 nop
731

732 .global pre_sleep
733 pre_sleep:
734

735 stm #(acq_test4+lsb_sel), AR0
736 portw AR0, wr_disc
737

738 ssbx INTM
739 stm #0FFh,IFR ; Clear any pending interrupts
740

741 idle 2 ; and now...we wait.
742

743 .global post_sleep
744 post_sleep:
745

746 ; check for aux int -> serial monitor
747 ; bitf IFR, #int_3
748 ; cc inth_3, TC
749

750 ; make sure we had a serial interrupt
751 bitf IFR, #int_bx
752 bc pre_sleep, NTC ; stray interrupt, go back to IDLE
753

754 nop
755

756 stm #int_bx, IFR ; clear int flag
757

758 mvmd BSPCE0, @bspce_save ; store control extension register in AR6
759

760 bitf BSPCE0, #bspce_xh
761 bc xh_skip, NTC
762

763 stm #(lsb_sel), AR0
764 portw AR0, wr_disc
765

766 xh_skip:
767

768 rpt #100
769 nop
770

771 stm #lsb_sel, AR0
772 portw AR0, wr_disc
773
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774 mvdm @bridge_size, AR0 ; need to copy these
775 mvdm @bridge_count, AR1 ; to use CMPR
776 nop
777 nop
778 cmpr LT, AR1 ; If we're not done with a bridged data sequence,
779 bc bridge_data, TC ; jump to bridge_data to
780 ; continue transfers, otherwise...
781 dld @major_count, A ; increment major frame counter
782 add #1, A
783 dst A, @major_count
784

785 b major_loop ; new data acquisition
786

787 ;
788 ; Main acquisiton ('appcode') branch done
789 ;
790

791 ;
792 ; Interrupts
793 ;
794

795 ; Non-Maskable Interrupt
796 ; this is hit by the watchdog
797 int_nmi:
798 nop
799 nop
800

801 stm #0, AR0
802 portw AR0,wr_dog ; Strobe watchdog timer
803

804 b 0xF800
805

806 ; Setup: IPTR=0x1FF, OVLY=1, all else =0
807 ; This should set things up to completely
808 ; reload the program from the EPROM on reset.
809 stm #0xFFA0, PMST
810 nop
811 nop
812

813 ; reset ; I don't have to take this. ...I'm going home.
814

815 ret ; should never get here!
816

817 inth_3:
818 ssbx INTM
819 stm #int_3, IFR ; clear int flag
820
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821 ; call serial monitor
822

823 ; calld _RxDSP_Monitor
824 ; stm #bspce_haltx, BSPCE ; tell serial transmit to halt
825 ; after completing this half-buffer
826

827 retd
828 nop
829 nop
830

831 file_header:
832 .string "Dartmouth College Rx-DSP, AGO Site 3 Unit 0."
833 .word 0000h ; Null terminator
834

835 ;```````
836 ; hwrite
837 ;
838 ; Writes a header:
839 ;
840 ; <0xFE6B2840><RxDSP><Unit #><Ver #><NCOF><MFCB><00000000>
841 ;_______
842

843 hwrite:
844 .global hwrite
845

846 pshm AR3
847

848 ; 4-byte sync
849 stm #static_header, AR3 ; Point to static header words
850 rpt #static_header_len ; <SYNC><RxDSP>
851 mvdd *AR3+, *AR4+
852

853 stm #code_version, AR3
854 rpt #3
855 mvdd *AR3+, *AR4+
856

857 stm #spec_header, AR3 ; Point to static header words
858 rpt #spec_header_len ; <skipNS><fbstFBSN><fbenFBEN>
859 mvdd *AR3+, *AR4+
860

861 stm nco_freq, AR3
862 ld *AR3, #-8, A
863 and #0xFF, A
864 stl A, *AR4+
865 ld *AR3+, A ; inc to second word
866 and #0xFF, A
867 stl A, *AR4+
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868 ld *AR3, #-8, A
869 and #0xFF, A
870 stl A, *AR4+
871 ld *AR3, A
872 and #0xFF, A
873 stl A, *AR4+
874

875 stm #band_width, AR3
876 rpt #3
877 mvdd *AR3+, *AR4+
878

879 stm major_count, AR3
880 ld *AR3, #-8, A
881 and #0xFF, A
882 stl A, *AR4+
883 ld *AR3+, A ; inc to second word
884 and #0xFF, A
885 stl A, *AR4+
886 ld *AR3, #-8, A
887 and #0xFF, A
888 stl A, *AR4+
889 ld *AR3, A
890 and #0xFF, A
891 stl A, *AR4+
892

893 popm AR3
894

895 retd
896 nop
897 nop
898

899 static_header:
900 .word 0xFE, 0x6B, 0x28, 0x40
901 .string "AGORxDSP" ; 12 bytes
902 static_header_end:
903 static_header_len .set static_header_end-static_header-1
904

905 spec_header:
906 .string "stride08"
907 .string "cbst0113"
908 .string "cben0166"
909 .string "00000000" ; pad to 32 bytes
910 spec_header_end:
911 spec_header_len .set spec_header_end-spec_header-1
912

913 .end
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File Frame \Byte # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 … N-1 N
1 FS1 FS2 FS3 FS4 FS5 FS6 FC1 FC2 TSs1 TSs2 TSs3 TSs4 TSs5 TSu1 TSu2 TSu3 AD1 AD2 … ADn-1 ADn

… … … … … … … … … … … … … … … … … … … … … …

128 Bits FS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025dFS: 48-bit File Sync bit pattern = 0xb0f919c5025d
File Frame Header SizeFile Frame Header Size 16 BytesBytes FC: 16-bit File Frame CounterFC: 16-bit File Frame CounterFC: 16-bit File Frame CounterFC: 16-bit File Frame CounterFC: 16-bit File Frame Counter

10 11 12 13 14 15 16 17 TSs: 40-bit seconds since epochTSs: 40-bit seconds since epochTSs: 40-bit seconds since epochTSs: 40-bit seconds since epochTSs: 40-bit seconds since epochTSs: 40-bit seconds since epoch
File Frame Data SizeFile Frame Data Size 1 2 4 8 16 32 64 128 KB TSu: 24-bit microsecondsTSu: 24-bit microsecondsTSu: 24-bit microsecondsTSu: 24-bit microsecondsTSu: 24-bit microseconds

Percent OverheadPercent Overhead 1.56 0.78 0.39 0.2 0.1 0.05 0.02 0.01 % ADn: serial data bytesADn: serial data bytesADn: serial data bytesADn: serial data bytes

Header Byte # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Data \xFE \x6B \x28 \x40 R x D S P Un S S v 1 . 0 N C O F B A N D M F C B 0 0 0 0

\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0\xFE\x6B\x28\x40RxDSPUnSSv1.0 NCOFBANDMFCB0000NCOFBANDMFCB0000NCOFBANDMFCB0000NCOFBANDMFCB0000NCOFBANDMFCB0000NCOFBANDMFCB0000NCOFBANDMFCB0000
Un: Unit Number in ASCIIUn: Unit Number in ASCIIUn: Unit Number in ASCIIUn: Unit Number in ASCIIUn: Unit Number in ASCII NCOF: Center FrequencyNCOF: Center FrequencyNCOF: Center FrequencyNCOF: Center FrequencyNCOF: Center FrequencyNCOF: Center FrequencyNCOF: Center Frequency BAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter bandBAND: Width of the filter band

MFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter BytesMFCB: Major Frame Counter Bytes

Major FrameMajor Frame
Minor Frame # \Byte # 1 2 3 4 5 6 7 8 … 517 518 519 520 521 522 523 524

1 S1 S2 C1 C2 H1 H2 H3 H4 … I121H I121L Q121H Q121L I122H I122L Q122H Q122L
2 S1 S2 C1 C2 I123H I123L Q123H Q123L … Q66H Q66L I128H I128L Q128H Q128L
3 S1 S2 C1 C2 … … … … … … … … … … … … …
4 S1 S2 C1 C2 I449H I449L Q449H Q449L … I450L Q450H Q450L I512H I512L Q512H Q512L

Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.Major Frame has 32-byte header, followed by 2048 bytes of data.
Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.Minor Frames are determined by 54x BSP half-buffer size, for above major frame size we use 524-byte minor frames.
Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.Minor frames have 2-byte counters, data, then 2-byte sync words.
C1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame countC1: Composite info byte, 2 MSB unit designation, 6 LSB minor frame count C2: Second info byte, major frame countC2: Second info byte, major frame countC2: Second info byte, major frame countC2: Second info byte, major frame countC2: Second info byte, major frame countC2: Second info byte, major frame count
S1: Sync 1, 0xEBS1: Sync 1, 0xEB S2: Sync 2, 0x28S2: Sync 2, 0x28S2: Sync 2, 0x28S2: Sync 2, 0x28S2: Sync 2, 0x28 H1…H32: major frame headerH1…H32: major frame headerH1…H32: major frame headerH1…H32: major frame headerH1…H32: major frame header (Q/I)1(H/L)…512: Data(Q/I)1(H/L)…512: Data(Q/I)1(H/L)…512: Data

Figure A.1: Maps of the Sondrestrom MI-ARC data structure, with file structure top,
headers middle, and major/minor frame structure bottom.

A.4 Sondrestrom MI-ARC

The Sondrestrom MI-ARC has three sample-synchronized Rx-DSPs. It cycles through a
table of center frequencies, returning small frames of data through a single serial line. The
data from the three units is combined on the line by a custom hardware multiplexer. The
two unique parts of this deployment’s code are an additional RSP function, and the main
program code.

A.4.1 Data Structure

Figure A.1 shows the structure of the Sondrestrom data. The data file structure is on top,
and file frames include sync words, counters, time data, and the serial data stream (which
may be asynchronous to the file’s frame structure). Middle is the structure of the header,
containing the major frame sync words, unit number, and frequency data. Finally, on the
bottom is the internal structure of the major frames, each composed of four minor frames.
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A.4.2 RSP One-Shot

This function modifies one memory location in the AD6620’s RAM. The most common use
for this is to change the center frequency.

1 ;```````
2 ; rsp_os Receive Processor One-Shot
3 ; Quickly loads one 36-bit value to an address on the AD6620
4

5 rsp_os:
6 ; 36-bit value in A
7 ; 10-bit address in B
8

9 ; write address 0x0303 to address registers
10 stl B, #-8, AR4
11 andm #0x03, AR4 ; mask to lower two bytes
12 nop
13 nop
14 nop
15 nop
16 portw AR4, wr_rx+amr
17

18 stl B, AR4
19 andm #0xFF, AR4
20 nop
21 nop
22 nop
23 nop
24 portw AR4, wr_rx+lar
25

26 ; write 36-bit value into five 8-bit data registers
27 mvdm @AG, AR4
28 andm #0x0F, AR4 ; 0x0F 0000 0000
29 nop
30 nop
31 nop
32 nop
33 portw AR4, wr_rx+dr4
34

35 sth A, #-8, AR4 ; 0x00 FF00 0000
36 andm #0xFF, AR4
37 nop
38 nop
39 nop
40 nop
41 portw AR4, wr_rx+dr3
42

43 sth A, AR4 ; 0x00 00FF 0000
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44 andm #0xFF, AR4
45 nop
46 nop
47 nop
48 nop
49 portw AR4, wr_rx+dr2
50

51 stl A, #-8, AR4 ; 0x00 0000 FF00
52 andm #0xFF, AR4
53 nop
54 nop
55 nop
56 nop
57 portw AR4, wr_rx+dr1
58

59 stl A, AR4 ; 0x00 0000 00FF
60 andm #0xFF, AR4
61 nop
62 nop
63 nop
64 nop
65 portw AR4, wr_rx+dr0 ; writing to dr0 commits
66

67 retd
68 nop
69 nop

A.4.3 MI-ARC Main Program Code

This main program code is unique in that it was designed to do away with separate codes
and .hex files for the Master and Slave units. Instead, the code’s role is entirely determined
by the unit_designation uword, which can be targeted by the PROM burner, and auto-
incremented when PROMs for a number of units are burned in-sequence.

The code contains two helper functions, cfreq_walk and sync_units, which implement the
frequency switching and frame synchronization, respectively. This setup uses the TCLKR
and TCLKX lines of the TDM Serial Port (TSP) as feedback inputs from the two Slave
units, to help ensure synchronization.

1 ; v1.1 2012.06.01 Added 1-frequency debug mode
2 ; controlled by trm_28 jumper
3

4 .mmregs
5 .global ZERO, BMAR, PREG, DBMR, INDX, ARCR, TREG1
6 .global TREG2, CBSR1, CBER1, CBSR2, CBER2
7 .global RXDSP_START
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8 .ref _serial_cook
9 .ref rsp_clear, rsp_reset, rsp_init

10 .ref rsp_mstart, rsp_sstart, rsp_freq
11 .ref transfer, transfer_table_sz
12 .global bridge_data, buff_clear_loop
13 .def ago_main, int_nmi
14

15 .include "rx-dsp.h"
16 .text
17

18 find_me .ulong 0x6B28FE40
19 unit_designation .uword 0 ; Unit number (Master = 0)
20 code_version .string "v1.0"
21 station_code .string "SS"
22

23 band_width .string "0750"
24

25 ; Rotating center frequency table
26 ; 32-bit values derived by mapping the sampling frequency (S) to
27 ; the 0:2^32 range, then taking the ratio of center frequency
28 ; (C) to S, i.e. C/S*2^32
29

30 cfreq_table:
31 .word 0x01d2, 0xf1c9 ; 475 kHz
32 .word 0x04b4, 0x39a7 ; 1225 kHz
33 .word 0x0795, 0x8185 ; 1975 kHz
34 .word 0x0a76, 0xc964 ; 2725 kHz
35 cfreq_table_end:
36 cfreq_table_sz .set cfreq_table_end-cfreq_table
37

38 cfreq_test .word 0x0e66, 0x6758 ; 3750 KHz, used when
39 ; trm_28 jumper is on
40

41 cfreq_toggle1 .set 0x0999 ; 2500 kHz
42 cfreq_toggle2 .set 0x9A3B
43

44

45 ; Run constants
46 data_n .set 512 ; Size of each FFT (# of IQ pairs)
47 data_discard .set 512 ; number of words to discard from
48 ; Rx FIFO before taking data
49 data_minor_sz .set 1 ; number of acquisitions per
50 ; half-buffer interrupt
51 abu_buff_sz .set 1048 ; size of serial buffer
52 ; (2x major frame size IN BYTES)
53 fsync_sz .set 4 ; # of serial frame sync bytes
54 ; (should be multiple of 4)
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55

56 ; Memory allocations
57 data_addr .usect ".data_v", 0x800, 1, 1
58 stackres .usect ".stack_v", 0x40, 1, 1
59 abu_buff_loc .usect ".sbuff_v", abu_buff_sz, 1, 1
60 abu_buff_hloc .set abu_buff_loc+abu_buff_sz/2 ; half-way
61

62 ; Scratchpad RAM usage
63 bridge_count .set scratch
64 minor_count .set scratch+1
65 bspce_save .set scratch+2
66 bridge_size .set scratch+3
67 major_count .set scratch+4 ; two words!
68 nco_freq .set scratch+6 ; two words!
69 cfreq_tp .set scratch+8
70

71 .bss TempLmem,1*2,0,0 ;temporary dword
72

73

74 RXDSP_START
75 ago_main:
76

77 rsbx XF
78

79 ; Processor setup
80 ssbx INTM ; Disable interrupts
81 stm #(stackres+0x40), SP ; set Stack Pointer
82 stm #npmst,PMST ; Set processor mode/status
83 ; stm #defst0, ST0
84 ; stm #defst1, ST1
85 rsbx SXM ; Suppress sign extension
86 ; rsbx XF
87 nop ; Space for branch to app
88 nop
89

90 ssbx XF
91 rpt #64
92 nop
93 rsbx XF
94

95 appcode:
96 ; stm #0,state ; Clear interrupt routine state
97 stm #0,AR0 ; Clear auxilliary register 0
98 portw AR0,wr_rs_rx ; Reset AD6620 RSP
99 portw AR0,wr_disc ; Enable parallel TLM drivers, I_Q out

100 portw AR0,wr_dog ; Strobe watchdog timer
101
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102 stm #0,AR0 ; Clear all auxiliary registers
103 stm #0,AR1
104 stm #0,AR2
105 stm #0,AR3
106 stm #0,AR4
107 stm #0,AR5
108 stm #0,AR6
109 stm #0,AR7
110

111 stm #0FFh,IFR ; Clear any pending interrupts
112 stm #ntss,TCR ; Stop timer, if running
113 .global read_init
114 ; Main data code start
115 read_init:
116 call rsp_reset
117 call rsp_init
118 call rsp_clear
119 call rsp_mstart
120

121 rpt #4444 ; Let the AD6620 do its first initialization in peace
122 nop
123

124 call rsp_reset
125

126 portr rs_rx_fifo, AR0 ; Reset Rx FIFO - also wired to Slave
127 nop
128 nop
129

130 stm #lsb_sel, AR0 ; Reset acq_seq
131 portw AR0, wr_disc
132 nop
133

134

135 ; TSP shutoff
136

137 ; stm #(tspc_Free+tspc_fsm+tspc_nXrst+tspc_nRrst), TSPC
138 stm #(tspc_Free+tspc_fsm), TSPC
139

140 ; BSP prep
141

142 stm #(bspc_Free+bspc_fsm), BSPC0 ; reset BSP
143 stm #(int_bx), IMR ; unmask serial transmit interrupt
144 ; 10-bit words, enable tx autobuffer, halt after first half-buffer
145 stm #(bspce_fe+bspce_bxe+bspce_haltx), BSPCE0
146 stm #(abu_buff_loc-0x800), AXR ; where in RAM does
147 ; the tx buffer start?
148 stm #(abu_buff_sz), BKX ; buffer size
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149

150 ; Clear entire serial buffer
151 stm #abu_buff_loc, AR4
152 stm #abu_buff_sz-1, BRC
153 rptb buff_init_loop - 1
154

155 st #0h, *AR4+
156 .global buff_init_loop, head_ramp, major_loop
157 buff_init_loop:
158

159 ; set initial frequency table position
160

161 st #cfreq_table_sz-2, @cfreq_tp
162

163 ; rsbx INTM ; global interrupt enable
164

165 ; All Aux Registers are fungible in the main loop: values which must
166 ; be preserved over time are stored in the scratchpad RAM as defined
167 ; above. Note that only AR6 and AR7 are required to be preserved by
168 ; the DSP Library functions (and most others), all other ARx may be
169 ; modified within function calls.
170

171 ld #0, A
172 dst A, @major_count
173

174 ; Set initial bspce_save such that the first acquisition will
175 ; write to the second half of the serial buffer
176 st #bspce_xh, @bspce_save
177

178 ; boot lag: insert >50 ms delay to allow
179 ; everyone plenty of time to boot up
180 stm #16384, BRC
181 nop
182 nop
183 rptbd boot_delay_loop - 1
184 nop
185 nop
186

187 nop
188

189 rpt #4096
190 nop
191

192 nop
193 nop
194

195 boot_delay_loop:
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196

197 nop
198 nop
199

200 ; now synchronize units for the first time
201 call sync_units
202

203 ; Start BSP transmits
204 stm #(bspc_Free + bspc_fsm + bspc_nXrst), BSPC0 ; hold fsm bit
205 nop
206 nop
207

208 ;```````
209 ; Main loop
210 ;_______
211

212 major_loop:
213 .global major_loop
214

215 ; Method:
216 ;
217 ; Master waits for acq_seq_rdy from Slaves, then raises
218 ; acq_seq_out, starting synced acquisition. Note any previous
219 ; acquisition will still be transferring its last half-buffer,
220 ; and the ABU will be set to halt transmissions when that half
221 ; is done. The acq_seq_rdy & out lines are both held high on
222 ; All, until the end of this new acquisition and half-buffer
223 ; fill. Then Master waits for its own ABU haltx, and then for
224 ; !acq_seq_rdy (signaling Slaves have hit ABU haltx), before
225 ; dropping acq_seq_out, signaling time for the next
226 ; synchronized ABU startup.
227

228 call cfreq_walk
229

230 ; acquisition sync
231 call sync_units
232

233 portr rs_rx_fifo, AR0 ; Reset Rx FIFO - also wired to Slave
234

235 cmpm *(unit_designation), #0
236 bc slave_startup, NTC
237

238 ; if Master (unit 0) insert delay time to allow
239 ; Slaves time to detect acq_seq_out and start up
240 rpt #128
241 nop
242
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243 call rsp_mstart ; start digitizing as Master
244

245 b data_acq_start
246

247 slave_startup:
248

249 call rsp_sstart ; start digitizing as Slave
250

251 ;
252 ; Reads
253 ;
254 data_acq_start:
255

256 st #0, @bridge_count ; reset bridged data counter
257 st #0, @minor_count ; reset minor frame counter
258

259 ;
260 ; Set wait states for Rx FIFO
261 ;
262 ldm SWWSR, A
263 ld #65535, B
264 xor #7, #swwsr_is, B ; (0b111<<Nset XOR 0d65535) creates bitmask
265 and B, A ; mask out bits of interest
266 or #0, #swwsr_is, A ; (A or Nwait<<Nset) to set Nwait to Nset
267 ; Nwait = 0 means no additional waits
268 stlm A, SWWSR
269

270 .global pre_disc, pre_read
271 pre_disc:
272

273 ; loop to read and discard first data out of AD6620
274 stm #(data_discard), AR2
275 nop
276 rx_discard_loop:
277 ; read only if rx fifo is nonempty
278 portr rd_disc, AR0
279 nop
280 nop
281 bitf AR0, rx_efo
282

283 bc discard_fifo_empty, NTC
284 portr rd_rx_out, AR1 ; read data into AR1
285 mar *AR2- ; decrement word counter
286 discard_fifo_empty:
287

288 banz rx_discard_loop, *AR2
289
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290

291 ; loop to read data from Rx FIFO into RAM
292 stm #2, AR0
293 stm #data_addr, AR1 ; set address for first data word
294 stm #(data_n*2-1), AR2
295 pre_read:
296 nop
297 rx_read_loop:
298 ; read only if rx fifo is nonempty
299 portr rd_disc, AR3
300 nop
301 nop
302 bitf AR3, rx_efo
303

304 bc read_fifo_empty, NTC
305

306 portr rd_rx_out, *AR1+
307 mar *AR2- ; decrement word counter
308

309 read_fifo_empty:
310

311 banzd rx_read_loop, *AR2
312 nop
313 nop
314

315 ;
316 ; Set wait states for other stuff (full 7)
317 ;
318 ldm SWWSR, A
319 or #7, #swwsr_is, A ; (A or Nwait<<Nset) to set Nwait to Nset
320 stlm A, SWWSR
321 nop
322 nop
323

324 ; Stop acquisition
325 call rsp_reset
326

327 ; drop acq flags
328 stm #lsb_sel, AR0
329 portw AR0, wr_disc
330

331 ;
332 ; End data collection, begin serial data handling
333 ;
334 st #4*data_n, @bridge_size
335

336 ; entry point for bridging data transfers
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337 ; over multiple serial half-buffers
338 bridge_data:
339 .global bridge_data
340

341 stm #(lsb_sel), AR0 ; send acq_seq, set lsb_sel
342 portw AR0, wr_disc
343

344 nop
345 nop
346 ; Determine serial buffer position
347 stm #abu_buff_loc, AR3 ; load buffer base
348

349 bitf @bspce_save, #bspce_xh ; read XH out of
350 ; stored BSPCE register
351 nop
352 nop
353 bc buff_skip, NTC ; if first half _finished_
354 ; (XH=0, NTC), do nothing
355

356 addm #(abu_buff_sz/2), @AR3
357 stm #(lsb_sel), AR0
358 portw AR0, wr_disc
359

360 buff_skip:
361 nop
362 nop
363 nop
364 nop
365

366 abu_first_half:
367 .global abu_first_half
368

369 ssbx INTM
370

371 ; Clear serial buffer half
372 mvmm AR3, AR4
373 nop
374 rpt #(abu_buff_sz/2-1)
375 st #0x00, *AR4+
376

377

378 ; reset AR4 for data copy
379 mvmm AR3, AR4
380 nop
381 nop
382

383 abu_fill_start:
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384 .global abu_fill_start
385

386

387 ; two-byte frame sync 0xEB90
388 st #0xEB, *AR4+
389 st #0x90, *AR4+
390

391 ; two-byte infofoop
392 ld *(unit_designation), #6, A ; byte 1, 2 MSB, unit number
393 or @minor_count, A ; byte 1, 6 LSB, minor frame number
394 stl A, *AR4+
395 dld @major_count, A ; byte 2, 8 bit, major frame number
396 and #0xFF, A
397 stl A, *AR4+
398

399 dinner_is_ready:
400 .global dinner_is_ready
401

402 ld #((abu_buff_sz/2-fsync_sz)/2-1), B ; let's stick the
403 ; BRC value here...
404

405 ; If haltx is true, we are starting a
406 ; new major frame, so write the header
407 bitf BSPCE0, #bspce_haltx
408 bc header_skip, NTC
409

410 call hwrite ; write out header, uses &
411 ; modified write address in AR4
412 sub #16, B ; oops, 32 bytes less space in this half buffer
413

414 header_skip:
415 ; copy raw data (words) into serial buffer (bytes)
416 ld #data_addr, A
417 add @bridge_count, #-1, A ; div by 2 to increment
418 ; input word-wise
419 stlm A, AR2 ; store a copy of the data to AR2
420 stlm B, BRC ; and here's our BRC setup
421

422 mvdm @bridge_size, AR0 ; goal bridge size
423 mvdm @bridge_count, AR1 ; current count
424

425 rptb rawdata_loop - 1
426

427 ld *AR2, -8, A ; load (data word) >> 8 to Acc
428 and #0xFF, A ; mask to low-byte
429 stl A, *AR4+ ; save to serial buffer
430 mar *AR1+ ; count bytes
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431

432 ld *AR2+, A ; reload and increment
433 and #0xFF, A ; mask
434 stl A, *AR4+ ; save
435 mar *AR1+ ; count bytes
436

437 cmpr LT, AR1 ; If we're not done with a bridged data sequence
438 nop
439 nop
440 xc 1, NTC
441 rsbx BRAF
442 nop
443 nop
444 nop
445 nop
446 nop
447 .global rawdata_loop, dbg_transfer_skip
448 rawdata_loop:
449

450 nop
451 nop
452

453 mvmd AR1, @bridge_count
454

455 ; Bit reverse and add start/stop bits
456 ldm AR3, A
457 ld #(abu_buff_sz/2), B
458

459 call _serial_cook
460

461

462 ; rsbx INTM
463

464 addm #1, @minor_count
465 nop
466 nop
467 stm #(lsb_sel), AR0
468 portw AR0, wr_disc
469

470 ; buffer is now loaded
471 call rsp_clear ; clear NCO RAM, do it here
472 ; since we have some free time
473

474 ; Strobe watchdog- once per minor frame cycle
475 stm #0, AR0 ; Data is not used- just the wr_dog strobe
476 portw AR0,wr_dog ; Strobe the watchdog
477
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478 ; clear interrupt flags, then idle until an interrupt.
479 .global pre_sleep
480 pre_sleep:
481

482 ssbx INTM
483 stm #0FFh,IFR ; Clear any pending interrupts
484

485 idle 2 ; and now...we wait.
486

487 .global post_sleep
488 post_sleep:
489

490 ; check for aux int -> serial monitor
491 ; bitf IFR, #int_3
492 ; cc inth_3, TC
493

494 ; make sure we had a serial interrupt
495 bitf IFR, #int_bx
496 bc pre_sleep, NTC ; stray interrupt, go back to IDLE
497 nop
498

499 stm #int_bx, IFR ; clear int flag
500

501 mvmd BSPCE0, @bspce_save ; store control extension register
502

503 ; if this is a new major frame, we need to sync
504 ; everyone up by waiting for all ABU haltx.
505

506 bitf BSPCE0, #bspce_haltx
507 bc abu_restart_skip, NTC
508

509 abu_haltx_wait:
510 .global abu_haltx_wait
511

512 ; ABU has halted. Reset ABU, and synchronize
513 stm #(bspce_fe+bspce_bxe), BSPCE0 ; 10-bit words, enable
514 ; tx ABU, disable haltx
515

516 call sync_units
517

518 ; Start BSP transmits
519 stm #(bspc_Free + bspc_fsm + bspc_nXrst), BSPC0 ; hold fsm bit
520 nop
521 nop
522

523 rpt #16383
524 nop
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525

526 ; unset acq_seq, keep lsb_sel
527 stm #lsb_sel, AR0
528 portw AR0, wr_disc
529

530 abu_restart_skip:
531 .global abu_restart_skip
532

533 mvdm @bridge_size, AR0 ; need to copy these
534 mvdm @bridge_count, AR1 ; to use CMPR
535 nop
536 nop
537 cmpr LT, AR1 ; If we're not done with
538 ; a bridged data sequence,
539 bc bridge_data, TC ; jump to bridge_data to
540 ; continue transfers, otherwise...
541

542 dld @major_count, A ; increment major frame counter
543 add #1, A
544 dst A, @major_count
545

546 ; The final half is transmitting, we want to halt when it finishes.
547 stm #(lsb_sel), AR0
548 portw AR0, wr_disc
549 orm #bspce_haltx, BSPCE0
550 nop
551 nop
552 ; stm #(lsb_sel), AR0
553 ; portw AR0, wr_disc
554

555 b major_loop ; new data acquisition
556

557 ;```````
558 ; Main acquisiton ('appcode') branch done
559 ;_______
560

561 ;
562 ; Interrupts
563 ;
564

565 ; Non-Maskable Interrupt
566 ; this is hit by the watchdog
567 int_nmi:
568

569 nop
570 stm #npmst, PMST ; Reset PMST to be sure IPTR -> 0x80
571
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572 ; Alternative: IPTR=0x1FF, OVLY=1, all else =0
573 ; This should set things up to completely reload
574 ; the program from the EPROM on reset
575 ; stm #0xFFA0, PMST
576

577 reset ; I don't have to take this. ...I'm going home.
578

579 ret ; should never get here!
580

581

582 inth_3:
583 ssbx INTM
584 stm #int_3, IFR ; clear int flag
585

586 retd
587 nop
588 nop
589

590 ;```````
591 ; cfreq_walk
592 ;
593 ; walks through the table of center frequencies
594 ; at label #cfreq_table
595 ;
596 ; stores table position @cfreq_tp and current NCO value
597 ; as a 32-bit number @nco_freq
598

599 cfreq_walk:
600

601 portr rd_disc, AR0
602 nop
603 nop
604 bitf AR0, #trm_28
605 ; If trm_28 is low (NTC, jumper on), skip the walk.
606 bc walk_skip, NTC
607

608 addm #2, @cfreq_tp
609 nop
610 nop
611 cmpm @cfreq_tp, #cfreq_table_sz
612 nop
613 nop
614 xc 2, TC
615 st #0, @cfreq_tp
616

617 nop
618 nop
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619

620 ld #(cfreq_table), A
621 add @cfreq_tp, A
622 stlm A, AR0
623

624 b cfreq_commit
625

626 walk_skip:
627 ; load a single frequency instead
628 stm #(cfreq_test), AR0
629

630 cfreq_commit:
631

632 nop
633 nop
634

635 ld *AR0+, B
636 stl B, @nco_freq
637 sftl B, #8
638 sftl B, #8
639 ld *AR0, A
640 stl A, @(nco_freq+1)
641 or B, A
642

643 nop
644 nop
645

646 stm #acq_ant_1, AR0 ; enable antenna 1
647

648 ; frequency is in A. subtract toggle freq and save result to B
649 sub #cfreq_toggle1, #16, A, B
650 sub #cfreq_toggle2, B
651

652 xc 2, BGEQ ; if B>=0, cfreq >= toggle freq
653 stm #acq_ant_2, AR0 ; so enable antenna 2
654 nop
655

656 portw AR0, wr_disc ; write out antenna toggle lines
657

658 call rsp_freq
659

660 retd
661 nop
662 nop
663

664 ;```````
665 ; sync_units
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666 ;
667 ; synchronizes master/slave units by
668 ; toggling and waiting for latched lines
669

670 sync_units:
671

672 ; Raise test2 line. On the Master this should do nothing (NC),
673 ; on the Slaves it signals the Master they are ready.
674

675 stm #(acq_seq_rdy+lsb_sel), AR0
676 portw AR0, wr_disc
677 nop
678 nop
679

680 ; Check status of TSP, wait for IN1 & IN2 high
681 ready_loop:
682

683 nop
684

685 bitf TSPC, #tspc_in0
686 bc ready_loop, NTC
687

688 bitf TSPC, #tspc_in1
689 bc ready_loop, NTC
690

691 ; Raise acq_seq_out--on the Master this signals the Slaves
692 ; to start, on the Slaves it does nothing (NC).
693 stm #(acq_seq_out+acq_seq_rdy+lsb_sel), AR0
694 portw AR0, wr_disc
695

696 retd
697 nop
698 nop
699

700 static_header:
701 .word 0xFE, 0x6B, 0x28, 0x40
702 .string "RxDSP"
703 static_header_end:
704

705 static_header_len .set static_header_end-static_header-1

A.4.4 Sondrestrom Utilities

Below are two short Python utility scripts: the first acquires MI-ARC data from the serial
port, saves it to disk, and will parse out major frames and save them separately for real-time
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display, if desired. The second is a mostly functional real-time display script which makes
use of the Gnuplot.py module.

tridsp-acq.py

1 #!/usr/bin/env python
2

3 # MCB 27 Sept. 2013. This code is the same as tridsp-acq.py except
4 # there are new lines (41-43) that power cycle the receiver by
5 # changing the state of the serial DTR line.
6

7 import serial,signal,sys,time
8 from struct import unpack,pack
9 from datetime import datetime

10 import numpy as np
11 #import Gnuplot
12 #from matplotlib import pyplot as plt
13 from optparse import OptionParser
14

15 parser = OptionParser(usage="""tridsp-acq.py: read in triple-DSP multiplexed
serial data.""")

16

17 parser.set_defaults(verbose=False,port="/dev/ttyS0", ofp="SStridsp",
nboards=3, majfsync=0xFE6B2840, majfsz=4, minfsz=524, limit=242936,
filesync=0xb0f919c5025d, acqsz=4080, rtd=True, rtdfile="/tmp/trirtd.data")

18

19 parser.add_option("-o", "--outfile", type="str", dest="ofp", help="Output
file prefix. [default: %default]")

20 parser.add_option("-p", "--port", type="str", dest="port", help="Serial port
number. [%default]")

21 parser.add_option("-r", "--rtd", action="store_true", dest="rtd",
help="Write out major frames for RTD. [%default]")

22 parser.add_option("-R", "--rtdfile", type="str", dest="rtdfile", help="File
for RTD data. [%default]")

23 parser.add_option("-n", "--nboards", type="int", dest="nboards",
help="Number of multiplexed DSP boards. [%default]")

24 parser.add_option("-s", "--maj-sync", type="int", dest="majfsync",
help="Major frame sync pattern. [%default]")

25 parser.add_option("-z", "--maj-size", type="int", dest="majfsz", help="# of
Minor frames per Major frame. [%default]")

26 parser.add_option("-Z", "--min-size", type="int", dest="minfsz", help="# of
bytes per Minor frame. [%default]")

27 parser.add_option("-X", "--limit", type="int", dest="limit", help="Number of
acquisitions to record. [%default]")

28 parser.add_option("-v", "--verbose", action="store_true", dest="verbose",
29 help="print status messages to stdout.")
30

31 (o, args) = parser.parse_args()
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32

33 o.majfsync = pack("4B", *[(o.majfsync>>i)&0xFF for i in [24,16,8,0]])
34 o.filesync = pack("6B", *[(o.filesync>>i)&0xFF for i in [40,32,24,16,8,0]])
35

36 try:
37 inp = serial.Serial(port=o.port, baudrate=115200, bytesize=8,

parity='N', stopbits=1)
38 except serial.SerialException:
39 print "Unable to open serial port {0}.".format(o.port)
40 sys.exit(1)
41

42 #Restore power to receiver by toggling the DTR line
43 time.sleep(5.0)
44 inp.setDTR(False)
45

46 print("Reading from serial port {0}...".format(o.port))
47

48 dtstr = datetime.today().strftime("%Y%m%d-%H%M%S")
49

50 ofn = "{0}-{1}.data".format(o.ofp, dtstr)
51 ofile = open(ofn, "w")
52

53 print("Taking {0} {1}-byte acquisitions ({2} hours).".format(o.limit,
o.acqsz, o.limit*o.acqsz/11520/3600))

54

55 print("Writing data to {0}...".format(ofn))
56

57 if o.rtd:
58 rfile = open(o.rtdfile, 'w')
59

60 print("Writing RTD data to {0}.".format(o.rtdfile))
61

62 framecount = 0
63 bytestr = ""
64 mfbsync = "".join([o.majfsync[i]*o.nboards for i in range(len(o.majfsync))])
65 mfbsize = o.nboards*o.majfsz*o.minfsz
66

67 running = True
68

69 acqcount = 0
70

71 while running and acqcount < o.limit:
72 data = inp.read(o.acqsz)
73

74 # build timestamp: 40-bit uint seconds since epoch, 24-bit uint
microseconds

75 timefl = time.time()
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76 timeint = int(timefl)
77 timefrac = int((timefl-timeint)*(1e6))
78 timestr = ( pack(">Q", timeint&0xFFFFFFFFFF)[3:] ) + ( pack(">I",

timefrac)[1:] )
79

80 ofile.write(o.filesync)
81 ofile.write(pack('>H', framecount&0xFFFF)) # 16-bit counter
82 ofile.write(timestr)
83 ofile.write(data)
84

85 framecount += 1
86

87 # if we want rtd, add to bytestream, and if there's a major frame in
there, write it

88

89 if o.rtd:
90 bytestr += data
91

92 loc = bytestr.find(mfbsync)
93 nloc = bytestr.find(mfbsync, loc+1)
94

95 if (loc >= 0) and (nloc >= loc):
96 rfile.seek(0)
97 rfile.write(bytestr[loc-4 * o.nboards:nloc-4 *

o.nboards])
98 rfile.flush()
99 # prelen = len(bytestr)

100 bytestr = bytestr[nloc-4*o.nboards:]
101 # postlen = len(bytestr)
102 # print("Wrote RTD file. {0} ->

{1}".format(prelen,postlen))
103

104 acqcount += 1
105

106 if o.rtd:
107 rfile.close()
108 ofile.close()

tridsp-rtd.py

1 #!/usr/bin/env python
2 from os.path import getmtime
3 import sys
4 from struct import unpack,pack
5 from datetime import datetime
6 import numpy as np
7 import Gnuplot
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8 #from matplotlib import pyplot as plt
9 from optparse import OptionParser

10 from math import ceil, floor
11

12 parser = OptionParser(usage="""tridsp-acq.py: read in triple-DSP multiplexed
serial data.""")

13

14 parser.set_defaults(verbose=False, rfile="/tmp/trirtd.data", nboards=3,
15 majfsync=0xFE6B2840,

majfsz=4,
16 minfsync=0xEB90, minfsz=524,

dataplot=True)
17

18 parser.add_option("-r", "--rfile", type="str", dest="rfile", help="RTD data
file. [default: %default]")

19 parser.add_option("-n", "--nboards", type="int", dest="nboards",
help="Number of multiplexed DSP boards. [%default]")

20 parser.add_option("-s", "--maj-sync", type="int", dest="majfsync",
help="Major frame sync pattern. [%default]")

21 parser.add_option("-z", "--maj-size", type="int", dest="majfsz", help="# of
Minor frames per Major frame. [%default]")

22 parser.add_option("-S", "--min-sync", type="int", dest="minfsync",
help="Minor frame sync pattern. [%default]")

23 parser.add_option("-Z", "--min-size", type="int", dest="minfsz", help="# of
bytes per Minor frame. [%default]")

24 parser.add_option("-v", "--verbose", action="store_true", dest="verbose",
25 help="print status messages to stdout.")
26 parser.add_option("-c", "--channel", action = "store",type = 'int',

dest="chan_num", help = "channel number to display")
27 parser.add_option("-f", "--freq", action = "store_true", dest = "spectra")
28 parser.add_option("-b", "--band", action = "store", dest = "bw",

type="float")
29 (o, args) = parser.parse_args()
30 def b2iq(indat):
31 # input : binary string containing 16-bit big-endian signed I/Q data
32 # output: [[I array], [Q array]]
33

34 num = unpack(">"+str(len(indat)/2)+"h", indat)
35 return np.reshape(num, (2,-1), "F")
36

37 cplotd = {}
38 blist = range(o.nboards)
39

40 infile = open(o.rfile, 'r')
41 freqplot=Gnuplot.Gnuplot()
42 #freqplot("set title \"Unit {0}\"".format(k,cfreq))
43 freqplot("set term x11 noraise")
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44 freqplot("set yrange [0:140]")
45 freqplot("set xrange [100:3100]")
46 freqplot("set style data lines")
47 #freqplot("set title \"{0} KHz\"".format(cfreq))
48

49 oldtime = 0
50 first_loop = 0
51 plots= []
52

53 running = True
54

55 window = np.hanning(512)
56

57 while running:
58

59 while True:
60 newtime = getmtime(o.rfile)
61 if newtime != oldtime:
62 break
63

64 oldtime = newtime
65 badness = False
66

67 infile.seek(0)
68 data = infile.read()
69

70 # parse major frames and plot
71 unitdata = [[]]*o.nboards
72

73 for i in blist:
74 bdata = data[i::o.nboards]
75 majfr = "".join([bdata[j*o.minfsz+4:(j+1)*o.minfsz] for j in

range(o.majfsz)]) # extract major frame
76 minsyncs = "".join([bdata[j*o.minfsz:j*o.minfsz+4] for j in

range(o.majfsz)]) #extract minor frame syncs
77

78 minunit = [(x & 0xC0)>>6 for x in unpack(">4B",
minsyncs[2::4])]

79 if len(np.unique(minunit)) != 1:
80 print("Minor frame Unit number mismatch.")
81 badness = True
82

83 minmajN = unpack(">4B", minsyncs[3::4])
84 if len(np.unique(minmajN)) != 1:
85 print("Minor frames' major frame # mismatched.")
86 badness = True
87

158



88 unit = unpack("B", majfr[9])[0]-0x30
89 if unit != np.unique(minunit)[0]:
90 print("Major frame doesn't match minor frame Unit

#.")
91 badness = True
92

93 majN = unpack(">I", majfr[24:28])[0]&0xFF
94 if majN&0xFF != np.unique(minmajN)[0]: # mask to one-byte

to test against minor frame #
95 print("Major frame # doesn't match minor frames'

major frame #.")
96 badness = True
97

98 # looks like a good major frame
99 cfreq = int(round(unpack(">I",

majfr[16:20])[0]/2.0**32*66666.6))
100 nums = unpack(">"+str(len(majfr)/2-16)+"h", majfr[32:])
101

102 unitdata[unit] = { 'cfreq' : cfreq,
103 'eyes' : nums[::2],
104 'ques' : nums[1::2] }
105

106 if len(np.unique([ x['cfreq'] for x in unitdata ])) != 1:
107 print("Center frequency mismatch!")
108

109 if badness:
110 continue
111

112 cfreq = unitdata[0]['cfreq']
113

114 if o.spectra:
115 k = o.chan_num
116 dfdb = o.bw/512.0
117 freqlist = [cfreq-(o.bw/2.0) + dfdb * i for i in range(512)]
118 eyes = unitdata[k]['eyes']
119 ques = unitdata[k]['ques']
120 fftdata = [eyes[j] + ques[j] * 1j for j in range(len(eyes))]
121

122 spec = [10.0*y for y in np.log10([abs(x)**2 for x in
np.fft.fft(window*fftdata,n=512,)])] # power spectra

123 spec = spec[len(spec)/2:]+spec[:len(spec)/2] # swap from
normal order

124

125 if ((cfreq == 475) or (cfreq == 3750)) and (len(plots) > 0):
126 freqplot.plot(*plots)
127 plots = []
128 plots.append(Gnuplot.Data(freqlist, spec))
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Appendix B

Test-Particle Simulation, Distribution
Building, and
Growth-Rate Calculation Codes

Note that most of the simulation and growth rate Matlab codes were initially tested and
debugged on a Core i5-4590S (4-core, 3 GHz), with 32 GB of RAM. So, not a powerhouse
FLOPS-wise, but the code is pretty carefree regarding memory usage. Caveat emptor if you
run this on a system with less RAM—Matlab may cry out, and forfeit.

B.1 Mirror Shards

Below are the primary test particle codes as used in this thesis. Historically, the mirror
code was a single particle code provided by Dr. Wayne Scales. When moving towards
parallelism, it was rewritten to be monolithic, and entirely run via the Matlab Distributed
Compute Server (DCS) on GPU nodes. Then the computation was found to be entirely
FLOPS-dependent, and running one or only a few particles on a single fast CPU core to be
preferable to GPU massive parallelism. This requires as many CPU cores as possible, far
beyond the artificially limited (due to Mathworks’ prohibitive licensing fees) DCS max core
number.

So, the decision was made to break the code apart into separate pieces, each of which would
run be queued and run as a separate job on a PBS/TORQUE cluster compute system. The
‘mirror shard’ codes are so-named because they break the mirror simulation particles up
among some number of ‘shards’, with each shard assigned a set number of calculation cores.
A given core can work on one or many particles, and one or multiple shards can run on a
given node—whatever makes for the best queuing setup.

The three primary codes are the distribute code, the Alice code, and the gather code.
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B.1.1 Distribute

This code provides a Matlab function, mirror_shards_distribute(n_run, n_shards), which
generates the ‘test distribution’ with a given range of positions, velocities (given in eV), pitch
angles, and azimuthal angles, and breaks it up among the specified number of shards. It splits
the distribution up among a set of files of form mshard-r<n_run>-<i>of<n_shards>-input.mat,
and also saves all pertinent distribution input parameters in the file ‘mshards-r<n_run>-master.mat’.

It does the splitting in an excessively lazy manner, using Matlab’s built-in distributed()
function over the Distributed Compute Server (DCS). This requires that a core for each
shard, i.e. the maximum number of shards possible is equal to the maximum number of
cluster cores available for use with the DCS.

This splitting is quite frankly a holdover from the rushed transition from a monolithic design
to the sharded design. With some work this code could be done away with entirely—the
inline distribution-building function is very fast, so it could be done within each individual
job, based on the input parameters given and the job’s ID number. Then the only remaining
function of this code would be to build the ‘master’ file used to save the input parameters.

1 function ret = mirror_shards_distribute(n_run, n_shards)
2 % mirror_shards_distribute()
3 %
4 % Breaks a data array down into a number of shards, for use on single-node
5 % local worker pools, so we don't have to deal with Matlab DCE
6 % limitations on cores.
7 % Feed it a run number, and the number of shards to break the data over.
8 % The fundamentals of the simulation are all set here.
9

10 q = 1;
11 m = 1;
12 nt = 10000; % # timesteps
13 dt = .01; % step length
14 qE = 0;
15 qmt2 = q/m*dt/2;
16

17 B0 = 50e-6; % Magnetic field base is 50 uT
18 v0 = 0.00989179273; % likewise velocity base
19 % in PSL is equivalent to 25 eV
20 r0 = 0.337212985; % based on Larmour radius w/ above,
21 % length base is ~0.337 m
22 t0 = 7.14477319e-7; % based on B, Larmour period ~714 ns in s
23

24 target_length = 5000; % in km
25 target_z = -target_length*1000/r0; % negative because we're
26 % launching upwards
27 long_enough = 1000000000;
28 mirror_ratio = 5;
29 saved_steps = 1000;
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30

31 % So Bsim=Breal/50uT, vsim=vreal/25 eV, and xsim=xreal/0.337m
32 % So a 100x100x1000 simulation extent is a 33.7x33.7x337m volume
33 % So dt ~71.4ns, and 1000 timesteps is 71us
34

35 % assumes 'end point' is z=0
36 length_factor = target_z^2/(mirror_ratio-1);
37

38 x_range = 0;
39 y_range = 0;
40 z_range = target_z;
41 v_range = [ 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, ...
42 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, ...
43 784, 841, 900, 961, 1024, 1089, 1156, 1225 ]; % linear in v
44 t_dphi = 3*pi/256; % delta for co-latitude
45 t_domega = 0.001; % delta for solid angle in steradians
46 %p_range = 0:pi/7:pi; %0:pi/15:pi/2;
47

48 v_distrib = build_distrib(v0, x_range, y_range, z_range, v_range,
t_dphi, t_domega);

49

50 % Re-run particles that failed due to max timestep limit in Run 4
51 load tzind.mat t_zind
52 v_distrib = v_distrib(:,t_zind)
53

54 parpool('torque_4nodes',n_shards)
55

56 N_part = size(v_distrib,2);
57 disp([ 'Distributing ' num2str(N_part) ' particles over '

num2str(n_shards) ' node shards...' ])
58

59 v_sdivdist = distributed(v_distrib);
60

61 disp('Start')
62 tic
63

64 % spmd (single program, multiple data) is a more generalized
65 % multithreaded methodology than parfor, and allows use of
66 % distributed/codistributed functionality to split up arrays
67 spmd
68

69 v_localdist = getLocalPart(v_sdivdist);
70 N_dpart = size(v_localdist, 2);
71 chunk_inds = globalIndices(v_sdivdist,2);
72

73 disp( [ 'Shard ' num2str(labindex) ': ' num2str(N_dpart) ' particles
(' num2str(chunk_inds(1)) ':' num2str(chunk_inds(end)) ').' ] )
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74

75 % Have to call a function to use save inside an spmd.
76 % Because...raisins.
77 % Local workspace memory separation something something.
78 save_mah_data_plz(n_run, labindex, n_shards, N_dpart, chunk_inds,

v_localdist);
79

80 end
81

82 toc
83 disp('Done.')
84

85 save(['mshards-r' num2str(n_run) '-master.mat'], ...
86 'n_run', 'n_shards', 'N_part', 'v_distrib', ...
87 'q', 'm', 'nt', 'dt', 'qE', 'qmt2', ...
88 'B0', 'v0', 'r0', 't0', 'target_length', 'target_z', ...
89 'long_enough', 'length_factor', 'mirror_ratio', ...
90 'saved_steps', 'v_range', 't_dphi');
91

92 ret = 0;
93

94 end
95

96 function save_mah_data_plz(n_run, labindex, n_shards, N_shardpart,
chunk_inds, v_sharddist)

97 % Just a function to save data. Raisins.
98

99 save(['mshard-r' num2str(n_run) '-' num2str(labindex) 'of'
num2str(n_shards) '-input.mat'], ...

100 'n_run', 'N_shardpart', 'chunk_inds', 'v_sharddist');
101

102 end
103

104 function d = build_distrib(v0, x_range, y_range, z_range, v_range, t_dphi,
t_domega)

105 % Build particle distribution
106

107 % initial positions x y z
108 % initial velocities v theta phi (magnitude, azimuth, co-latitude)
109 % mag 25:2000 eV, azi 0, el 0:pi/2
110 % input as [ x y z v theta phi ] columns in v_distrib_raw
111

112 t_phis = 0+t_dphi:t_dphi:pi/2-t_dphi; % range of phis, discard first
(pole) and last (plane)

113

114 angle_list = [ 0 0 ];
115 for i=1:length(t_phis)
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116 t_phi = t_phis(i);
117 angle_list = [ angle_list ; 0 t_phi ];
118 end
119

120 %angle_list = angle_list([ 1 2 3 4 19 20 21 22 38 39 40 41 ],:)
121

122 % limit angles for tests
123 %angle_list = angle_list(sin(4*angle_list(:,2)).^2 >= 0.995,:); % wedges

in azimuthal angle
124

125 v_distrib_raw = zeros(6,length(x_range) * length(y_range) *
length(z_range) * length(v_range) * length(angle_list));

126 vdr_ind = 1;
127 for i=1:length(x_range)
128 for j=1:length(y_range)
129 for k=1:length(z_range)
130 for l=1:length(angle_list)
131 for m=1:length(v_range)
132 v_distrib_raw(:,vdr_ind) = [ x_range(i) y_range(j)

z_range(k) v_range(m) angle_list(l,1)
angle_list(l,2) ];

133 vdr_ind = vdr_ind + 1;
134 end
135 end
136 end
137 end
138 end
139

140 % Transform v_mag,theta,phi to v_x, v_y, v_z
141 v_distrib = v_distrib_raw;
142 t_v = sqrt(3.913903e-6*v_distrib_raw(4,:))/v0;
143 % number is 2/(m_e*c^2) in eV^-1
144 v_distrib(4,:) = t_v .* cos(v_distrib_raw(5,:)) .*

sin(v_distrib_raw(6,:));
145 v_distrib(5,:) = t_v .* sin(v_distrib_raw(5,:)) .*

sin(v_distrib_raw(6,:));
146 v_distrib(6,:) = t_v .* cos(v_distrib_raw(6,:));
147

148 d = v_distrib;
149 end

B.1.2 Alice

The Alice code provides mirror_shards_alice(n_shard, n_cores, master_file), the pri-
mary worker function of the system. It must be fed its shard number and the assigned
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number of cores by its calling PBS script. An incorrect core number will result in baffling
failures to run. It loads its distribution from the input file corresponding to its n_shard,
performs the processing until particles reach their target altitude, then saves its results as
codistributed arrays to ‘mshard-r<n_run>-<n_shard>of<n_shards>-output.mat’.

1 function ret = mirror_shards_alice(n_shard, n_cores, master_file)
2 % mirror_shards_alice()
3 %
4 % Does the actual simulation work in the mirror_shards_* system.
5

6 p_g = load(master_file,'n_run','n_shards', ...
7 'dt','qE','qmt2','r0', 'long_enough', ...
8 'target_length','mirror_ratio', 'saved_steps');
9

10 target_z = -p_g.target_length*1000/p_g.r0;
11 % negative because we're launching upwards
12 length_factor = target_z^2/(p_g.mirror_ratio-1);
13 % assumes 'end point' is z=0
14

15 % load values from p_g
16 n_run = p_g.n_run; n_shards = p_g.n_shards; dt = p_g.dt; qE = p_g.qE;
17 qmt2 = p_g.qmt2; long_enough = p_g.long_enough; saved_steps =

p_g.saved_steps;
18

19 % n_run, N_shardpart, chunk_inds, v_sharddist;
20 p_s = load(['mshard-r' num2str(n_run) '-' num2str(n_shard) 'of'

num2str(n_shards) '-input.mat'], ...
21 'N_shardpart','v_sharddist');
22

23 N_shardpart = p_s.N_shardpart;
24 v_sharddist = p_s.v_sharddist;
25

26 parpool('local', n_cores);
27

28 % This is local to the shard now, but we'll just redefine below for the
29 % part of the distribution that's local to each worker.
30 v_sdivdist = distributed(v_sharddist);
31

32 disp([ 'Simulating ' num2str(N_shardpart) ' particles over INFINITE
timesteps...' ])

33 tic
34 disp('Start')
35

36 % spmd (single program, multiple data) is a more generalized
37 % multithreaded methodology than parfor, and allows use of
38 % distributed/codistributed functionality to split up arrays
39 spmd
40
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41 v_localdist = getLocalPart(v_sdivdist);
42 N_dpart = size(v_localdist, 2);
43 chunk_inds = globalIndices(v_sdivdist,2);
44

45 disp( [ 'Running ' num2str(N_dpart) ' particles ('
num2str(chunk_inds(1)) ':' num2str(chunk_inds(end)) ') in Lab '
num2str(labindex) '.' ] )

46

47 % Pre-allocate result arrays
48 gm_X = zeros([ 3, saved_steps, N_dpart ], 'double'); % x,y,z
49 gm_V = zeros([ 3, saved_steps, N_dpart ], 'double'); % vx,vy,vz
50 gm_Bv = zeros([ 3, saved_steps, N_dpart ], 'double'); % Bx,By,Bz
51

52 % redundant array of results, seven 3-vectors containing
53 % 1,2 position and velocity at target-z (z_t)
54 % 3, # of timestep before z_t, after, and actual calculated crossing

time
55 % 4,5 position and velocity of pre-z_t timestep
56 % 6,7 position and velocity of post-z_t timestep
57 gm_result = zeros([ 3, 7, N_dpart ], 'double');
58

59 active_indices = 1:N_dpart;
60

61 % Get B at initial positions
62 % permute() lets us slot a (3,N) data peg into a (3,M,N) hole
63 gm_X(:,end-1,:) = permute(v_localdist(1:3,:),[1 3 2]);
64 gm_V(:,end-1,:) = permute(v_localdist(4:6,:),[1 3 2]);
65

66 % Recall all arrays are (dimension, timestep, particles)
67 gm_B_x = squeeze(-gm_X(1,end-1,active_indices) .*

gm_X(3,end-1,active_indices) / length_factor);
68 gm_B_y = squeeze(-gm_X(2,end-1,active_indices) .*

gm_X(3,end-1,active_indices) / length_factor);
69 gm_B_z = squeeze(1+gm_X(3,end-1,active_indices).^2 / length_factor);
70

71 % Calculate 2nd position with Boris Mover
72 gm_v_mh = squeeze(gm_V(:,end-1,:));
73 gm_v_minus = gm_v_mh + qE;
74

75 gm_B = [ gm_B_x gm_B_y gm_B_z ].';
76 gm_Bv(:,end,:) = gm_B;
77 gm_t_vec = qmt2*gm_B;
78 gm_s_vec = 2*gm_t_vec./(1+gm_t_vec.^2);
79 gm_v_prime = gm_v_minus + cross(gm_v_minus,gm_t_vec,1);
80 gm_v_plus = gm_v_minus + cross(gm_v_prime,gm_s_vec,1);
81

82 gm_V(:,end,:) = 0.5 .* (gm_v_mh + gm_v_plus + qE);

167



83 gm_X(:,end,:) = gm_X(:,end-1,:) + gm_V(:,end-1,:) .* dt;
84

85 tstep = 1;
86 % Loop until all particles are done.
87 while ~isempty(active_indices)
88 tstep = tstep + 1;
89

90 % shift saved-data matrices down one row
91 gm_X(:,1:end-1,active_indices) = gm_X(:,2:end,active_indices);
92 gm_V(:,1:end-1,active_indices) = gm_V(:,2:end,active_indices);
93 gm_Bv(:,1:end-1,active_indices) = gm_Bv(:,2:end,active_indices);
94

95 if labindex == 1 && mod(tstep,10000) == 0
96 display(['Step ' num2str(tstep) ', '

num2str(length(active_indices)) ...
97 ' particles active, min/max z = '

num2str(min(gm_X(3,end,active_indices))) '/'
num2str(max(gm_X(3,end,active_indices))) '.'])

98 end
99

100 % Recall all arrays are (dimension, timestep, particles)
101 gm_B_x = squeeze(-gm_X(1,end-1,active_indices) .*

gm_X(3,end-1,active_indices) / length_factor);
102 gm_B_y = squeeze(-gm_X(2,end-1,active_indices) .*

gm_X(3,end-1,active_indices) / length_factor);
103 gm_B_z = squeeze(1+gm_X(3,end-1,active_indices).^2 /

length_factor);
104

105 % half-step due to E-field
106 gm_v_minus = squeeze(gm_V(:,end-1,active_indices) + qE);
107

108 gm_B = [ gm_B_x gm_B_y gm_B_z ].';
109 gm_Bv(:,end,active_indices) = gm_B;
110 gm_t_vec = qmt2*gm_B;
111 gm_s_vec = 2*gm_t_vec./(1+gm_t_vec.^2);
112 % these calculate the B-field effects
113 gm_v_prime = gm_v_minus + cross(gm_v_minus,gm_t_vec);
114 gm_v_plus = gm_v_minus + cross(gm_v_prime,gm_s_vec);
115

116 % second half-step from E-field
117 gm_V(:,end,active_indices) = gm_v_plus + qE;
118

119 gm_X(:,end,active_indices) = gm_X(:,end-1,active_indices) +
gm_V(:,end-1,active_indices) .* dt;

120

121 % check if next z-pos passes the target plane z=0
122 strike_indices = active_indices(gm_X(3, end, active_indices) >=
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0);
123 if ~isempty(strike_indices)
124 %display([ 'Timestep ' num2str(tstep) ': '

num2str(length(strike_indices)) ' strikes.' ]);
125 % interpolate absolute strike XVT
126 % NB: assumes 'target z' is z=0 plane
127 t_nStrikes = length(strike_indices);
128 t_V0 = squeeze(gm_V(:,end-1,strike_indices)); % init and
129 t_V1 = squeeze(gm_V(:,end,strike_indices)); % final vel
130 t_X0 = squeeze(gm_X(:,end-1,strike_indices)); % init and
131 t_X1 = squeeze(gm_X(:,end,strike_indices)); % final pos
132

133 % acceleration from x_pre to x_post
134 t_a01 = ( t_V1-t_V0 )/dt;
135

136 % time to z=0
137 t_t0t = ( -t_V0(3,:) + sqrt(t_V0(3,:).^2 -

2*t_a01(3,:).*t_X0(3,:)) )./t_a01(3,:);
138 % velocity at z=0
139 t_Vt = t_V0 + bsxfun(@times,t_a01,t_t0t);
140 % complete pos at z=0
141 t_Xt = t_X0 + bsxfun(@times,t_V0,t_t0t) +

0.5*bsxfun(@times,t_a01,t_t0t.^2);
142

143 % target x, target v, times, x0, v0, x1, v1
144 gm_result(:,1,strike_indices) = squeeze(t_Xt);
145 gm_result(:,2,strike_indices) = squeeze(t_Vt);
146

147 t_t = [ (tstep+t_t0t)*dt ; repmat(tstep,1,t_nStrikes) ;
t_t0t ];

148

149 gm_result(:,3,strike_indices) = t_t;
150

151 gm_result(:,4,strike_indices) = squeeze(t_X0);
152 gm_result(:,5,strike_indices) = squeeze(t_V0);
153

154 gm_result(:,6,strike_indices) = squeeze(t_X1);
155 gm_result(:,7,strike_indices) = squeeze(t_V1);
156

157 active_indices = active_indices( ~ismember(active_indices,
strike_indices) );

158 end
159

160 end
161

162 display(['Final timesteps: ' num2str(tstep) '.'])
163
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164 t_codist_result = codistributor1d(3, codistributor1d.unsetPartition,
[3, 7, N_shardpart]);

165 t_codist_saved = codistributor1d(3, codistributor1d.unsetPartition,
[3, saved_steps, N_shardpart]);

166

167 % build codist arrays
168 r_divres = codistributed.build(gm_result, t_codist_result,

'noCommunication');
169 r_divsavX = codistributed.build(gm_X, t_codist_saved,

'noCommunication');
170 r_divsavV = codistributed.build(gm_V, t_codist_saved,

'noCommunication');
171 r_divsavB = codistributed.build(gm_Bv, t_codist_saved,

'noCommunication');
172

173 end % spmd
174

175 % gather() to recombine distributed arrays
176 r_shard_res = gather(r_divres);
177 r_shard_X = gather(r_divsavX);
178 r_shard_V = gather(r_divsavV);
179 r_shard_B = gather(r_divsavB);
180 r_shard_dist = gather(v_sdivdist);
181

182 save(['mshard-r' num2str(n_run) '-' num2str(n_shard) 'of'
num2str(n_shards) '-output.mat'], ...

183 'N_shardpart', 'r_shard_dist', ...
184 'r_shard_res', 'r_shard_X', 'r_shard_V', 'r_shard_B');
185

186 disp('End')
187 toc
188

189 ret = 0;
190

191 end

B.1.3 Gather

Our final code provides mirror_shards_gather(master_file), which requires only the ‘mas-
ter’ file generated by the Distribute function. It loads all applicable output files, runs
gather() to join the distributed()matrix, and saves the final results to ‘mshards-r<n_run>-final.mat’.

1 function mirror_shards_gather(master_file)
2 % mirror_shards_gather()
3 %
4 % Compiles the output produced by per-node mirror shards that ran on input
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5 % constructed by mirror_shards_distribute().
6

7 % load the things we care about
8 p_g = load(master_file, ...
9 'n_run', 'n_shards', 'N_part', 'v_distrib', 'saved_steps');

10

11

12 n_run = p_g.n_run; n_shards = p_g.n_shards; saved_steps =
p_g.saved_steps;

13 N_part = p_g.N_part; v_distrib = p_g.v_distrib;
14

15 parpool('torque_4nodes',n_shards);
16

17 disp([ 'Loading ' num2str(n_shards) ' shard outputs...' ])
18

19 spmd
20

21 [ v_sharddist, gm_result, gm_X, gm_V, gm_B ] =
load_mah_data_plz(n_run, labindex, n_shards);

22

23 t_codist_distrib = codistributor1d(2,
codistributor1d.unsetPartition, [6, N_part]);

24 t_codist_result = codistributor1d(3, codistributor1d.unsetPartition,
[3, 7, N_part]);

25 t_codist_saved = codistributor1d(3, codistributor1d.unsetPartition,
[3, saved_steps, N_part]);

26

27 % gather() to copy from GPU RAM to Main Memory
28 % ...or just to combine sharded data...
29 r_divdist = codistributed.build(v_sharddist, t_codist_distrib,

'noCommunication');
30 r_divres = codistributed.build(gm_result, t_codist_result,

'noCommunication');
31 r_divsavX = codistributed.build(gm_X, t_codist_saved,

'noCommunication');
32 r_divsavV = codistributed.build(gm_V, t_codist_saved,

'noCommunication');
33 r_divsavB = codistributed.build(gm_B, t_codist_saved,

'noCommunication');
34

35 end
36

37 disp('Done, saving...')
38

39 r_dist = gather(r_divdist);
40 r_res = gather(r_divres);
41 r_savX = gather(r_divsavX);

171



42 r_savV = gather(r_divsavV);
43 r_savB = gather(r_divsavB);
44

45 if ~isequal(r_dist, v_distrib)
46 disp('Rebuilt distribution does not equal OG distribution from

master file!')
47 end
48

49 save([ 'mshards-r' num2str(n_run) '-final.mat' ], ...
50 'n_run', 'n_shards', 'N_part', 'v_distrib', ...
51 'r_dist', 'r_res', 'r_savX', 'r_savV', 'r_savB');
52

53 disp('...great success?')
54

55 end
56

57 function [ l_dist, l_res, l_gm_X, l_gm_V, l_gm_B ] =
load_mah_data_plz(i_n_run,labindex,n_shards)

58

59 p_d = load([ 'mshard-r' num2str(i_n_run) '-' num2str(labindex) 'of'
num2str(n_shards) '-output.mat' ], ...

60 'r_shard_dist', 'r_shard_res', 'r_shard_X', 'r_shard_V',
'r_shard_B');

61

62 l_dist = p_d.r_shard_dist;
63 l_res = p_d.r_shard_res;
64 l_gm_X = p_d.r_shard_X;
65 l_gm_V = p_d.r_shard_V;
66 l_gm_B = p_d.r_shard_B;
67

68 end

B.1.4 Bonus Code: GPU-Node Support

This is the final version of mirror code which runs on GPUs. Note that this is old, and there
may be bug fixes and stuff in the Shards code that were not implemented here.

Algorithmically the code is essentially the same as Mirror Shards, but allocates its arrays
with the ‘gpuArray’ parameter, and makes heavy use of arrayfun() on included functions,
as this is faster on GPUs. As far as I can tell, when Matlab first sees an arrayfun() working
on data stored in the GPU’s RAM, it builds a CUDA kernel for that function, so future runs
of the same type (as in a for loop) are GPU accelerated/parallelized as best as possible.

There is some turning point, dependent on number of particles and the necessary timesteps
for the desired simulation length, between which either CPU sharding or GPU parallelism
is the best choice. Of course, it also depends on what GPUs and CPUs are available.
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mirror_gpu.m

1 function [ dist, resXVT, savedX, savedV ] = mirror_rtp()
2 % mirror_gpu_scriptable()
3 % Externally-scriptable version of test-particles-in-a-mirror-B-field
4 % simulation. Comes with functions (below) to build distribution and
5 % construct the field, as well as various support functions.
6 % By default, will fall back to CPU processing if compatible GPUs
7 % are not present.
8

9 q = 1;
10 m = 1;
11 nt = 10000; % # timesteps
12 dt = .1; % step length
13 qE = 0;
14 qmt2 = q/m*dt/2;
15

16 B0 = 1; % Magnetic field base is 50 uT
17 v0 = 0.00989179273; % likewise velocity base in
18 % PSL is equivalent to 25 eV
19 r0 = 0.337212985; % based on Larmour radius w/
20 % above, length base is ~0.337 m
21 t0 = 0.714477319; % based on B, Larmour period ~714 ns
22

23 target_length = 5000; % in km
24 target_z = -target_length/r0; % negative because
25 % we're launching upwards
26 long_enough = 500;
27 mirror_ratio = 5;
28 saved_steps = 500;
29

30 % So Bsim=Breal/50uT, vsim=vreal/25 eV, and xsim=xreal/0.337m
31 % So a 100x100x1000 simulation extent is a 33.7x33.7x337m volume
32 % So dt ~71.4ns, and 1000 timesteps is 71us
33

34 % assumes 'end point' is z=0
35 length_factor = target_z^2/(mirror_ratio-1);
36

37 x_range = 0;
38 y_range = 0;
39 z_range = target_z;
40 v_range = [25 484 1125];%[25, 36, 49, 64, 81, 100, 121, 144, ...
41 % 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, ...
42 % 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, ...
43 % 1225]; % linear in v
44 t_dtheta = 3*pi/256; % delta for co-latitude
45 t_domega = 0.001; % delta for solid angle in steradians
46 %p_range = 0:pi/7:pi; %0:pi/15:pi/2;
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47

48 v_distrib = build_distrib(v0, x_range, y_range, z_range, v_range,
t_dtheta, t_domega);

49

50 N_part = size(v_distrib,2);
51 [ 'Simulating ' num2str(N_part) ' particles over maximum '

num2str(long_enough) ' timesteps...' ]
52 N_ts = nt+2;
53

54 % distributed() is dumb, and requires the
55 % chunking dimension to be the last one.
56 v_sdivdist = distributed(v_distrib);
57

58 disp('Start')
59 tic
60

61 % spmd (single program, multiple data) is a more generalized
62 % multithreaded methodology than parfor, and allows use of
63 % distributed/codistributed functionality to split up arrays
64 spmd
65

66 v_localdist = getLocalPart(v_sdivdist);
67 N_dpart = size(v_localdist, 2);
68 chunk_inds = globalIndices(v_sdivdist,2);
69

70 d = gpuDevice();
71 disp( [ 'Running ' num2str(N_dpart) ' particles ('

num2str(chunk_inds(1)) ':' num2str(chunk_inds(end)) ') in Lab '
num2str(labindex) ' on GPU ' num2str(d.Index) '.' ] )

72

73 % Pre-allocate result arrays on GPU
74 gm_X = nan([ 3, saved_steps, N_dpart ], 'double', 'gpuArray');
75 gm_V = nan([ 3, saved_steps, N_dpart ], 'double', 'gpuArray');
76

77 % result is x,y,z,vx,vy,vz,t,ts1,ts2
78 gm_result = zeros([ 3, 3, N_dpart ], 'double', 'gpuArray');
79

80 d = gpuDevice();
81 t_tmem = d.TotalMemory;
82 t_umem = t_tmem-d.AvailableMemory;
83 disp( [ 'Memory Used: ' num2str(t_umem/1e9) '/' num2str(t_tmem/1e9)

'GB (' num2str(t_umem/t_tmem*100) '%)' ]);
84

85 active_indices = 1:N_dpart;
86 length(active_indices)
87

88 % Get B at initial positions
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89 % permute() lets us slot a (3,N) data peg into a (3,M,N) hole
90 gm_X(:,end-1,:) = permute(v_localdist(1:3,:),[1 3 2]);
91 gm_V(:,end-1,:) = permute(v_localdist(4:6,:),[1 3 2]);
92

93 % Recall all arrays are (dimension, timestep, particles)
94 gm_B_x = squeeze(arrayfun(@bxcalc,gm_X(1,end-1,:), gm_X(3,end-1,:),

length_factor));
95 gm_B_y = squeeze(arrayfun(@bycalc,gm_X(2,end-1,:), gm_X(3,end-1,:),

length_factor));
96 gm_B_z = squeeze(arrayfun(@bzcalc,gm_X(3,end-1,:), length_factor));
97

98 % Calculate 2nd position with Boris Mover
99 gm_v_mh = squeeze(gm_V(:,end-1,:));

100 gm_v_minus = gm_v_mh + qE;
101

102 gm_t_vec = tcalc(gm_B_x,gm_B_y,gm_B_z,qmt2);
103 gm_s_vec = scalc(gm_t_vec);
104 size(gm_v_minus)
105 size(gm_t_vec)
106 gm_v_prime = gm_v_minus + cross(gm_v_minus,gm_t_vec,1);
107 gm_v_plus = gm_v_minus + cross(gm_v_prime,gm_s_vec,1);
108

109 gm_V(:,end,:) = 0.5 .* (gm_v_mh + gm_v_plus + qE);
110 gm_X(:,end,:) = gm_X(:,end-1,:) + gm_V(:,end-1,:) .* dt;
111

112 tstep = 1;
113 % Loop until all particles are done, or we've
114 % done an absurd number of timesteps.
115 while ~isempty(active_indices) && (tstep <= long_enough)
116 tstep = tstep + 1;
117

118 % shift saved-data matrices down one row
119 gm_X(:,1:end-1,:) = gm_X(:,2:end,:);
120 gm_V(:,1:end-1,:) = gm_V(:,2:end,:);
121

122 if labindex == 1 && mod(tstep,100) == 0
123 display(['Step ' num2str(tstep) ', '

num2str(length(active_indices)) ...
124 ' particles active, min/max z = '

num2str(min(gm_X(3,end-1,active_indices))) '/'
num2str(max(gm_X(3,end-1,active_indices))) '.'])

125 end
126

127 % Recall all arrays are (dimension, timestep, particles)
128 gm_B_x = squeeze(arrayfun(@bxcalc, gm_X(1,end-1,active_indices),

gm_X(3,end-1,active_indices), length_factor));
129 gm_B_y = squeeze(arrayfun(@bycalc, gm_X(2,end-1,active_indices),
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gm_X(3,end-1,active_indices), length_factor));
130 gm_B_z = squeeze(arrayfun(@bzcalc, gm_X(3,end-1,active_indices),

length_factor));
131

132 % half-step due to E-field
133 gm_v_minus = squeeze(gm_V(:,end-1,active_indices) + qE);
134

135 gm_t_vec = tcalc(gm_B_x,gm_B_y,gm_B_z,qmt2);
136 gm_s_vec = scalc(gm_t_vec);
137 % these calculate the B-field effects
138 gm_v_prime = gm_v_minus + cross(gm_v_minus,gm_t_vec);
139 gm_v_plus = gm_v_minus + cross(gm_v_prime,gm_s_vec);
140

141 % second half-step from E-field
142 gm_V(:,end,active_indices) = gm_v_plus + qE;
143 gm_X(:,end,active_indices) = gm_X(:,end-1,active_indices) +

gm_V(:,end-1,active_indices) .* dt;
144

145 % check if next z-pos passes the target plane
146 strike_indices = active_indices(gm_X(3,end,active_indices) > 0);
147 if ~isempty(strike_indices)
148 display([ 'Timestep ' num2str(tstep) ': '

num2str(length(strike_indices)) ' strikes.' ]);
149 % interpolate absolute strike time?
150 gm_result(:,1,strike_indices) =

squeeze(gm_X(:,end,strike_indices));
151 gm_result(:,2,strike_indices) =

squeeze(gm_V(:,end,strike_indices));
152 gm_result(:,3,strike_indices) = repmat([ tstep-1 ; tstep ;

tstep*dt*t0 ],[1 length(strike_indices)]);
153 active_indices = active_indices( ~ismember(active_indices,

strike_indices) );
154 end
155 end
156

157 t_codist_result = codistributor1d(3, codistributor1d.unsetPartition,
[3, 3, N_part]);

158 t_codist_saved = codistributor1d(3, codistributor1d.unsetPartition,
[3, saved_steps, N_part]);

159

160 % gather() to copy from GPU RAM to Main Memory
161 r_divres = codistributed.build(gather(gm_result), t_codist_result,

'noCommunication');
162 r_divsavX = codistributed.build(gather(gm_X), t_codist_saved,

'noCommunication');
163 r_divsavV = codistributed.build(gather(gm_V), t_codist_saved,

'noCommunication');
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164

165 end % spmd
166

167 % gather() again to recombine distributed arrays
168 r_result = gather(r_divres);
169 r_savX = gather(r_divsavX);
170 r_savV = gather(r_divsavV);
171

172 toc
173 'Stop'
174

175 % results to output variables
176 dist = v_distrib;
177 resXVT = r_result;
178 savedX = r_savX;
179 savedV = r_savV;
180

181 end
182

183 function n = bxcalc(x,z,L_z2)
184 n = -x*z/L_z2;
185 end
186

187 function n = bycalc(y,z,L_z2)
188 n = -y*z/L_z2;
189 end
190

191 function n = bzcalc(z,L_z2)
192 n = (1+z^2/L_z2);
193 end
194

195 function n = threenorm(x,y,z)
196

197 n = sqrt(x^2+y^2+z^2);
198

199 end
200

201 function n = tcalc(bx,by,bz,c)
202

203 n = c*[ bx by bz ].';
204

205 end
206

207 function n = scalc(t)
208

209 n = 2*t./(1 + t.^2);
210
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211 end
212

213 function d = build_distrib(v0, x_range, y_range, z_range, v_range, t_dtheta,
t_domega)

214 % Build particle distribution
215

216 % initial positions x y z
217 % initial velocities v theta phi (magnitude, azimuth, elevation)
218 % mag 25:2000 eV, azi 0:pi, el 0:pi/2
219 % input as [ x y z v theta phi ] columns in v_distrib_raw
220

221 % range of thetas, discard first (pole) and last (plane)
222 t_range = 0+t_dtheta:t_dtheta:pi/2-t_dtheta;
223

224 angle_list = [ 0 0 ];
225 for i=1:length(t_range)
226 theta = t_range(i);
227 for omega=0:2*pi/round(2*pi*sin(theta)*t_dtheta/t_domega):2*pi
228 angle_list = [ angle_list ; theta omega ];
229 end
230 end
231

232 v_distrib_raw = zeros(6,length(x_range) * length(y_range) *
length(z_range) * length(v_range) * length(angle_list));

233 vdr_ind = 1;
234 for i=1:length(x_range)
235 for j=1:length(y_range)
236 for k=1:length(z_range)
237 for l=1:length(angle_list)
238 for m=1:length(v_range)
239 v_distrib_raw(:,vdr_ind) = [ x_range(i) y_range(j)

z_range(k) v_range(m) angle_list(l,1)
angle_list(l,2) ];

240 vdr_ind = vdr_ind + 1;
241 end
242 end
243 end
244 end
245 end
246

247 % Transform v_mag,theta,phi to v_x, v_y, v_z
248 v_distrib = v_distrib_raw;
249 % number is 2/(m_e*c^2) in eV^-1
250 t_v = sqrt(3.913903e-6*v_distrib_raw(4,:))/v0;
251 v_distrib(4,:) = t_v .* cos(v_distrib_raw(6,:)) .*

cos(v_distrib_raw(5,:));
252 v_distrib(5,:) = t_v .* cos(v_distrib_raw(6,:)) .*
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sin(v_distrib_raw(5,:));
253 v_distrib(6,:) = t_v .* sin(v_distrib_raw(6,:));
254

255 d = v_distrib;
256 end
257

258 function d = test_distrib()
259

260 test_array = [ 1 3 8 ;
261 4 7 2 ;
262 9 1 7 ;
263 4 6 2 ;
264 1 1 1 ];
265

266 test_v = [ 0 2 1.22 ;
267 0 1.9 1.22 ;
268 0 2.1 1.22 ;
269 0 2 1.12 ;
270 0 2 1.32 ];
271

272 d = shiftdim([ test_array test_v ],1);
273 end
274

275 function [ Xg, Yg, Zg, Bx, By, Bz ] = build_field()
276 % Field Initialization
277 L_xyz = 100;
278 n_xyz = 100;
279 k = pi/L_xyz;
280 x0 = 51; y0 = 51; z0 = 51;
281

282 % Generate the grid of the magnetic field
283 [X, Y, Z] = meshgrid(1:100, 1:100, 1:1000);
284 B_xgrid = zeros(100,100,1000); B_ygrid = zeros(100,100,1000); B_zgrid =

zeros(100,100,1000);
285 %B_maggrid = zeros(100,100,100);
286 for ii = 1:100
287 for jj = 1:100
288 for kk = 1:1000
289 % B_xgrid(ii,jj,kk) = 0;
290 % B_ygrid(ii,jj,kk) = 0;
291 % B_zgrid(ii,jj,kk) = -1;
292 % 2.85966 factor normalizes field so max magnitude is 1
293 B_xgrid(ii,jj,kk) = -(5/8) * k * sin(k*(kk-z0)) * (ii - x0)

/ 2.85966;
294 B_ygrid(ii,jj,kk) = -(5/8) * k * sin(k*(kk-z0)) * (jj - y0)

/ 2.85966;
295 B_zgrid(ii,jj,kk) = 5 * (1 - .5*(1 + 1/8*k^2 * ((ii - x0)^2
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+ (jj - y0)^2)) * cos(k*(kk-z0))) / 2.85966;
296 % B_maggrid(ii,jj,kk) = sqrt(B_xgrid(ii,jj,kk)^2 +

B_ygrid(ii,jj,kk)^2 + B_zgrid(ii,jj,kk)^2);
297 end
298 end
299 end
300

301 Xg = X; Yg = Y; Zg = Z;
302 Bx = B_xgrid; By = B_ygrid; Bz = B_zgrid;
303 end
304

305 function ok = selectGPUDeviceForLab()
306

307 persistent hasGPU;
308

309 if isempty( hasGPU )
310 devIdx = mod(labindex-1,gpuDeviceCount())+1;
311 try
312 dev = gpuDevice( devIdx );
313 hasGPU = dev.DeviceSupported;
314 catch %#ok
315 hasGPU = false;
316 end
317 end
318 ok = hasGPU;
319

320 end

B.1.5 Support Scripts

This is a simple python script which takes the desired number of shards and cores per shard,
as well as cell, wall time per core, and a run-identification number. It runs the Distribute
function to create the master and shard-input files, and creates a PBS script using the
template file (below), and accompanying submission script.

There is one problem with this, related to the fact that the script does not know how many
total particles the Distribute function will be creating. If you’re going for a one-particle-
per-core scenario, and your particles are not evenly divided by your number of cores per
shard, then you can end up with a scenario where on some shards you have more cores than
particles, and end up with Matlab workers crashing and messing things up (and crashed
workers don’t give very nice feedback).

Fixing this requires knowing how Matlab’s distributed() function split up the array. The
script will try to figure that out by looking at input file sizes, but you can specify it manually
with the -m option. Either way, we’ll set up two PBS scripts, and a two-stage submission
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script to switch between the two. To disable this behavior (e.g. if not aiming for a 1:1
particle:core ratio) , use -m -1.

Finally, there’s a simple script to run the Gather function.

mss.py:

1 #!/usr/bin/env python
2

3 from optparse import OptionParser
4 import subprocess
5 import sys
6

7 parser = OptionParser("Usage: %prog -r <run number> [options]")
8 parser.add_option("-r","--run",dest="run",type="int",default=0,
9 help="Run number [required].")

10 parser.add_option("-c","--cell",dest="cell",type="string",default="j",
11 help="Cell to use [default: %default].")
12 parser.add_option("-s","--shards",dest="shards",type="int",default=20,
13 help="Number of shards to break distribution into [%default].")
14 parser.add_option("-n","--cores",dest="cores",type="int",default=24,
15 help="Number of cores per shard [%default].")
16 parser.add_option("-w","--wall",dest="wall",type="int",default=50,
17 help="Wall time per core [%default].")
18 parser.add_option("-m","--modulo",dest="modulo",type="int",default=0,
19 help="Manually specify modulo point. The first M shards will be given N

cores per shard, the remainder will be given N-1. Set to -1 to
disable auto-detect.")

20

21 (opt, args) = parser.parse_args()
22

23 if opt.run==0:
24 print("Must provide a run number with -r.")
25 sys.exit()
26

27 # break up distribution
28 subprocess.call(["matlab","-nodisplay","-r",
29 "try; mirror_shards_distribute({0},{1}); catch; end;

quit".format(opt.run,opt.shards)])
30

31 def ms_size(i,t):
32 # returns size of an mshard file
33 fname = "mshard-r4-{0}of{1}-input.mat".format(i,t)
34 return os.path.getsize(fname)
35

36 if opt.modulo==0:
37 # try to figure out where Distribute put the modulo point
38 size = ms_size(1,opt.shards)
39 for i in range(2,opt.shards+1):
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40 if size != ms_size(i,opt.shards):
41 opt.modulo = i-1
42 break
43 if i==opt.shards:
44 opt.modulo = opt.shards
45

46 elif opt.modulo == -1:
47 # auto-detect disabled
48 opt.modulo = opt.shards
49

50 def mss_files(cores,wall,cell,run,mtag):
51 # function to create the PBS scripts
52 pbsfn = "mss_PBS-r{0}-m{1}.sh".format(run,mtag)
53 pbsfile = open(pbsfn,"w")
54

55 subprocess.call(["sed",
56 "s/@@PPN@@/{0}/; s/@@WALL@@/{1}/; s/@@CELL@@/cell{2}/;

s/@@RUN@@/{3}/;".format(cores,wall,cell,run),
57 "./mirror_shards.PBStemplate"],
58 stdout=pbsfile)
59 pbsfile.close()
60

61 # create primary PBS and job submission scripts
62 mss_files(opt.cores,opt.wall,opt.cell,opt.run,0)
63

64 subfile = open("mss_submit-r{0}.sh".format(opt.run),"w")
65 subfile.write("#!/bin/bash\n\n")
66 subfile.write("for ((i=1 ; i<={0} ; i++)); do\n".format(opt.modulo))
67 subfile.write("\tqsub -t $i mss_PBS-r{0}-m{1}.sh\n".format(opt.run,0))
68 subfile.write("\tsleep 7\n")
69 subfile.write("done\n")
70

71 if opt.modulo != opt.shards:
72 # if modulo, create second PBS script,
73 # add second part to submission script
74 mss_files(opt.cores-1,opt.wall,opt.cell,opt.run,1)
75

76 subfile.write("\nfor ((i={0} ; i<={1} ; i++));
do\n".format(opt.modulo+1,opt.shards))

77 subfile.write("\tqsub -t $i mss_PBS-r{0}-m{1}.sh\n".format(opt.run,1))
78 subfile.write("\tsleep 7\n")
79 subfile.write("done\n")
80

81 subfile.close()
82

83 # clean up output from Distribute
84 subprocess.call("rm -rf Job1*",shell=True)
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mirror_shards.PBStemplate:

1 #!/bin/bash -l
2 # declare a name for this job to be sample_job
3 #PBS -N mirror_shard
4

5 # request the default queue for this job
6 #PBS -q default
7

8 #PBS -l nodes=1:ppn=@@PPN@@
9 #PBS -l walltime=@@WALL@@:00:00

10 #PBS -l feature='@@CELL@@'
11

12 # mail is sent to you when the job starts
13 # and when it terminates or aborts
14 #PBS -m bea
15

16 # specify your email address
17 #PBS -M micah.p.dombrowski.gr@dartmouth.edu
18

19 #change to the directory where you submitted the job
20 cd $PBS_O_WORKDIR
21

22 # include the relative path to the name of your MPI program
23 matlab -nodisplay -r "try; mirror_shards_alice($PBS_ARRAYID,@@PPN@@,

'mshards-r@@RUN@@-master.mat'); catch; end; quit"

msf.py:

1 #!/usr/bin/env python
2

3 from optparse import OptionParser
4 import subprocess, sys, os
5

6 parser = OptionParser("Usage: %prog -r <run number> [options]")
7 parser.add_option("-r","--run",dest="run",type="int",default=0,
8 help="Run number [required].")
9

10 (opt, args) = parser.parse_args()
11

12 if opt.run==0:
13 print("Must provide a run number with -r.")
14 sys.exit()
15

16 # gather distribution
17 subprocess.call(["matlab","-nodisplay","-r",
18 "try; mirror_shards_gather('mshards-r{0}-master.mat'); catch; end;

quit".format(opt.run)])
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B.2 Result Reformation

These functions and codes take the raw output from the Mirror Shards system, and turn
it into something neatly packaged and usable in the later stages. The data Mirror Shards
returns is: three matrices, of the final 1,000 points for each particle, of position, velocity,
and magnetic field, and a ‘result’ array of data regarding travel times.

B.2.1 Gyro-Interpolation

Takes the raw data for each particle (the last 1,000 positions and velocities) and fits an
interpolating gyro-orbit function to it, then uses that to interpolate to the actual strike
values at the target plane. Uses the HyperSVD() algebraic circle-fitting function by Nikolai
Chernov (http://people.cas.uab.edu/~mosya/cl/), included below.

gyroterpolate.m

1 function [ t_tz_time, t_Xf, t_Vf, t_mphi, t_circ ] = gyroterpolate(t_X, t_V,
t_B, target_z, dt, t_d)

2 % Takes 3xTxN input vectors, where T = some number of saved timesteps,
3 % and N = some number of particles which have crossed the target
4 % z-level. Fits a gyro-orbit to each particle's track, then
5 % interpolates the actual strike XVT.
6

7 Ns = size(t_X, 2);
8 Np = size(t_X, 3);
9 t_tz_time = zeros(Np,1);

10 t_Xf = zeros(Np,3);
11 t_Vf = zeros(Np,3);
12 t_mphi = zeros(Np,1);
13 t_circ = zeros(Np,3);
14

15 options = optimoptions('fminimax');
16 options.Display = 'none';
17

18 parfor part=t_d%1:Np
19

20 t_pX = squeeze(t_X(:,:,part));
21 t_pV = squeeze(t_V(:,:,part));
22

23 tz_center = HyperSVD(squeeze(t_pX(1:2,:)).');
24

25 if tz_center(3) ~= 0 % gyropath
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26

27 t_circ(part,:) = tz_center;
28

29 % We know the equations of motion that the particle should
30 % be following; the only thing we don't know is the phase.
31 omega = sqrt(sum(squeeze(t_B(:,:,part)).^2,1)); % Bmag
32 vperp = sqrt( squeeze(t_pV(1,:)).^2 + squeeze(t_pV(2,:)).^2 );
33 vpar = t_pV(3,:);
34 ttime = (-(Ns-2):1)*dt;
35

36 t_Xc = [ t_pX(1,:) ; t_pX(2,:) ; t_pX(3,:) ];
37 t_x0 = t_pX(1,end-1);
38 t_y0 = t_pX(2,end-1);
39 t_z0 = t_pX(3,end-1);
40 deltx = t_Xc(1,:);
41 delty = t_Xc(2,:);
42 deltz = t_Xc(3,:)-t_z0;
43 Cx = -vperp./omega;
44 Cy = vperp./omega;
45 Cz = vpar.*ttime;
46 tau = omega.*ttime;
47

48 % geometric error
49 ferrorphi = @(phi) ferrorphifunc(phi, deltx, delty, deltz, tau,

Cx, Cy, Cz);
50

51 [ t_mphi(part), ~ ] = fminimax(ferrorphi, pi, [], [], [], [], 0,
2*pi, [], options);

52

53 % X, V before target crossing
54 tz_x0 = t_pX(1,end-1); tz_vx0 = t_pV(1,end-1);
55 tz_y0 = t_pX(2,end-1); tz_vy0 = t_pV(2,end-1);
56 tz_z0 = t_pX(3,end-1); tz_vz0 = t_pV(3,end-1);
57 % travel time to target crossing
58 t_tz_time(part) = (target_z-tz_z0)/vpar(end-1);
59

60 % now just use gryo equations to get final interp. results
61 tz_time = t_tz_time(part);
62 tz_vperp = sqrt(tz_vx0^2 + tz_vy0^2);
63 tz_omega = omega(end-1);
64 tz_tau = tz_omega*(ttime(end-1)+tz_time);
65 tz_phi = t_mphi(part);
66

67 tz_xf = -tz_vperp/tz_omega*cos(tz_tau + tz_phi) + tz_center(1);
68 tz_yf = tz_vperp/tz_omega*sin(tz_tau + tz_phi) + tz_center(2);
69 tz_zf = tz_vz0*tz_time + tz_z0;
70
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71 tz_vxf = tz_vperp*sin(tz_tau + tz_phi);
72 tz_vyf = tz_vperp*cos(tz_tau + tz_phi);
73 tz_vzf = tz_vz0;
74

75 [ tz_x0 tz_y0 tz_z0 ];
76 t_Xf(part,:) = [ tz_xf tz_yf tz_zf ];
77 [ tz_vx0 tz_vy0 tz_vz0 ];
78 t_Vf(part,:) = [ tz_vxf tz_vyf tz_vzf ];
79

80 else % straight line
81

82 % travel time to target crossing
83 t_tz_time(part) = (target_z-t_pX(3,end-1))/t_pV(3,end-1);
84

85 % x, y, and velocities don't change, just set z = target_z
86 t_Xf(part,:) = [ t_pX(1,end-1) t_pX(2,end-1) target_z ].';
87 t_Vf(part,:) = t_pV(:,end-1).';
88 t_mphi(part) = NaN;
89 t_circ(part,:) = [ t_pX(1,end-1) t_pX(2,end-1) 0 ];
90

91 end
92

93

94

95 end
96

97 %fdx = fdx + t_circ(1);
98 %fdy = fdy + t_circ(2);
99

100 % phi = fminbnd(ferrorphi, 0, 2*pi);
101

102 end
103

104 function err = ferrorphifunc(phi,deltx,delty,deltz,tau,Cx,Cy,Cz)
105

106 err = sqrt( ...
107 (deltx - Cx.*cos(tau + phi)).^2 + ...
108 (delty - Cy.*sin(tau + phi)).^2 + ...
109 (deltz - Cz).^2);
110

111 end
112

113 function vp = vel_upd(t, v, B, phi)
114 v_perp = sqrt(v(1).^2 + v(2).^2);
115 omega_g = 2*pi*B;
116

117 vp(1) = v_perp.*sin(omega_g.*t + phi);
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118 vp(2) = v_perp.*sin(omega_g.*t + phi);
119 vp(3) = v(3);
120 end
121

122 function xp = pos_upd(t, x, v, B, phi)
123 v_perp = sqrt(v(1).^2 + v(2).^2);
124 omega_g = 2*pi*B;
125

126 xp(1) = x(1) + -v_perp/omega_g.*cos(omega_g.*t + phi);
127 xp(2) = x(2) + v_perp/omega_g.*sin(omega_g.*t + phi);
128 xp(3) = x(3) + v(3).*t;
129 end

HyperSVD.m

1 function Par = HyperSVD(XY)
2 %-------------------------------------------------------------------
3 %
4 % Algebraic circle fit with "hyperaccuracy"
5 % (with zero essential bias)
6 %
7 % Input: XY(n,2) is the array of coordinates
8 % of n points x(i)=XY(i,1), y(i)=XY(i,2)
9 %

10 % Output: Par = [a b R] is the fitting circle:
11 % center (a,b) and radius R
12 %
13 % Note: this is a version optimized for stability, not for speed
14 %
15 %-------------------------------------------------------------------
16

17 centroid = mean(XY); % the centroid of the data set
18

19 X = XY(:,1) - centroid(1); % centering data
20 Y = XY(:,2) - centroid(2); % centering data
21 Z = X.*X + Y.*Y;
22 ZXY1 = [Z X Y ones(length(Z),1)];
23 [U,S,V]=svd(ZXY1,0);
24 if (S(4,4)/S(1,1) < 1e-12) % singular case
25 A = V(:,4);
26 else % regular case
27 R = mean(ZXY1);
28 N = [8*R(1) 4*R(2) 4*R(3) 2; 4*R(2) 1 0 0; 4*R(3) 0 1 0; 2 0 0 0];
29 W = V*S*V';
30 [E,D] = eig(W*inv(N)*W);
31 [Dsort,ID] = sort(diag(D));
32 Astar = E(:,ID(2));
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33 A = W\Astar;
34 end
35

36 Par = [-(A(2:3))'/A(1)/2+centroid ,
sqrt(A(2)*A(2)+A(3)*A(3)-4*A(1)*A(4))/abs(A(1))/2];

37

38 end % HyperSVD

B.2.2 Hemispherical Filling

Takes particles which were launched at one azimuthal angle, and rotates the whole system
to get a gyrotropic set with a constant solid angle subtended.

hemi_fill.m

1 function [ n, n_azi, rel ] = hemi_fill(xvt,r_dist,t_dphi,t_domega,varargin)
2 % hemi_fill: function to populate a constant-solid-angle hemisphere,
3 % given a single stripe of co-latitude positions and velocities, the
4 % corresponding co-latitudes, and the solid angle value in steradians.
5 %
6 % xv should be a 3x2xN vector, where N=(2pi/dphi)-2,
7 % positions are in (:,1,:), and velocities in (:,2,:)
8

9 opt = struct('cell',false,'phistop',2*pi);
10 opt = optParse(opt,varargin{:});
11

12 % range of thetas, discard first (pole) and last (equator)
13 t_phis = 0+t_dphi:t_dphi:pi/2-t_dphi;
14 n_phis = length(t_phis);
15 t_alpha = sqrt(r_dist(4,:).^2 + r_dist(5,:).^2)./r_dist(6,:);
16 n_En = length(find(t_alpha == 0));
17

18 nc_Xt = cell(n_phis,n_En,1);
19 nc_Vt = cell(n_phis,n_En,1);
20 nc_Xb = cell(n_phis,n_En,1);
21 nc_Vb = cell(n_phis,n_En,1);
22 nc_t = cell(n_phis,n_En,1);
23 n_azi = zeros(n_phis,1);
24 nc_rel = cell(n_phis,n_En,1);
25 for i=1:n_phis
26 t_phi = t_phis(i);
27

28 n_azi(i) = round(2*pi*sin(t_phi)*t_dphi/t_domega);
29 l_thetas = 0:2*pi/n_azi(i):opt.phistop;
30 n_az = length(l_thetas);
31 [ n_az n_azi(i) ];
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32 if n_az ~= n_azi(i)
33 % display('fuuu');
34 n_azi(i) = n_az;
35 end
36 for j=1:n_En
37 part = (i-1)*n_En + j;
38 display(['fnh ' num2str(part) ' lsjdf ' num2str(size(xvt))])
39 t_x = squeeze(xvt(:,1,part));
40 t_v = squeeze(xvt(:,2,part));
41 b_x = r_dist(1:3,part);
42 b_v = r_dist(4:6,part);
43 t_t = squeeze(xvt(:,3,part));
44

45 n_xt = zeros(3,n_az);
46 n_vt = zeros(3,n_az);
47 n_xb = zeros(3,n_az);
48 n_vb = zeros(3,n_az);
49 for k=1:n_az
50

51 t_theta = l_thetas(k);
52 t_rot = [ cos(t_theta) sin(t_theta) 0 ; -sin(t_theta)

cos(t_theta) 0 ; 0 0 1 ];
53

54 n_xt(:,k) = t_rot*t_x;
55 n_vt(:,k) = t_rot*t_v;
56 n_xb(:,k) = t_rot*b_x;
57 n_vb(:,k) = t_rot*b_v;
58 end
59

60 nc_Xt{i,j} = n_xt;
61 nc_Vt{i,j} = n_vt;
62 nc_Xb{i,j} = n_xb;
63 nc_Vb{i,j} = n_vb;
64 nc_t{i,j} = t_t(3);
65 nc_rel{i,j} = part;
66 end
67

68 end
69

70 n_vec = sum(n_azi)*n_En;
71 if opt.cell
72 n = cell(n_phis,5);
73 n(:,1) = nc_Xt;
74 n(:,2) = nc_Vt;
75 n(:,3) = nc_Xb;
76 n(:,4) = nc_Vb;
77 n(:,5) = nc_t;
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78 else
79 n = zeros(13,n_vec);
80 rel = zeros(1,n_vec);
81 i_n = 0;
82 for i=1:n_phis
83 for j=1:n_En
84 for k=1:n_azi(i)
85 i_n = i_n + 1;
86 n(:,i_n) = [ nc_Xt{i,j}(:,k) ; nc_Vt{i,j}(:,k) ;

nc_Xb{i,j}(:,k) ; nc_Vb{i,j}(:,k) ; nc_t{i,j} ];
87 rel(i_n) = nc_rel{i,j};
88 end
89 end
90 end
91 end
92

93 end
94

95 function optstr = optParse(options, varargin)
96

97 %# read the acceptable names
98 optionNames = fieldnames(options);
99

100 %# count arguments
101 nArgs = length(varargin);
102 if round(nArgs/2)~=nArgs/2
103 error('hemi_fill needs propertyName/propertyValue pairs')
104 end
105

106 for pair = reshape(varargin,2,[]) %# pair is {propName;propValue}
107 inpName = lower(pair{1}); %# make case insensitive
108

109 if any(strcmp(inpName,optionNames))
110 %# Overwrite options. If you want you can test for the right
111 %# class here. Also, if you find out that there is an option
112 %# you keep getting wrong, you can use "if strcmp(inpName,
113 %# 'problemOption'),testMore,end"-statements
114 options.(inpName) = pair{2};
115 else
116 error('%s is not a recognized parameter name',inpName)
117 end
118 end
119

120 optstr = options;
121 end
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B.2.3 Data-Processing Utility Script

This script runs gryoterpolate() and hemi_fill(), fiddling with the data in between and
after to yield a nicely structured result matrix for use in distribution building.

1 %% Mirror data raw output manipulation
2

3 % Important constants
4 Np = size(r_savX, 3);
5 B0 = 50e-6; % Magnetic field base is 50 uT
6 v0 = 0.00989179273; % likewise velocity base in
7 % PSL is equivalent to 25 eV
8 r0 = 0.337212985; % based on Larmour radius w/ above,
9 % length base is ~0.337 m

10 t0 = 7.14477319e-7; % based on B, Larmour period ~714 ns in s
11 dt = 0.01;
12

13 %% Gyro-interpolation
14

15 [ t_tz_time, t_Xf, t_Vf, t_mphi, t_circ ] =
gyroterpolate(r_savX,r_savV,r_savB,0,dt,1:Np);

16

17 %% Build new results matrix
18

19 r_interp = zeros(3, 3, Np);
20

21 % new layout:
22 % 1,2 position and velocity at target-z
23 % 3, number of timesteps before target (unitless, # of timesteps),
24 % fractional timestep to actually reach target (unitless, simulation

time [timesteps*dt]),
25 % total time (in ns, timesteps*dt*t0)
26

27 r_interp(:,1,:) = t_Xf.';
28 r_interp(:,2,:) = t_Vf.';
29

30 t_base_time = squeeze(r_res(2,3,:))-1;
31 t_time_ns = (t_base_time*dt+t_tz_time)*t0;
32

33 r_interp(:,3,:) = [ squeeze(r_res(2,3,:))-1 t_tz_time t_time_ns ].';
34

35 %% Hemi_fill to build a gyrotropic distribution.
36

37 t_dphi = 3*pi/256; % delta for co-latitude
38 t_domega = 0.001; % delta for solid angle in steradians
39 t_phis = 0+t_dphi:t_dphi:pi/2-t_dphi; % range of phis, discard
40 % first (pole) and last (plane)
41
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42 % final data is stored flat in a 13xN matrix
43 % top x y z top vx vy vz bottom x y z bottom vx vy vz time (ns)
44

45 [ r_hemiterp, ~, r_hemirel ] = hemi_fill(r_interp, r_dist, t_dphi, t_domega);
46

47 %% Save intermediate data
48

49 save J:\Data' Core'\particles\sim\run4-hemi.mat t_domega t_dphi t_phis B0 r0
t0 v0 target_length target_z N_part dt mirror_ratio length_factor r_dist
r_res r_interp r_hemiterp

50

51 %% Convert to units and reverse all velocities
52

53 Np = size(r_hemiterp,2);
54 eVconst = 3.913903e-6;
55

56 t_X_t = r_hemiterp(1:3,:)*r0; % Distances in m
57

58 t_vx_t = -r_hemiterp(4,:);
59 t_vy_t = -r_hemiterp(5,:);
60 t_vz_t = -r_hemiterp(6,:);
61 t_vmag_t = sqrt(t_vx_t.^2 + t_vy_t.^2 + t_vz_t.^2); % v, unitless
62 t_vpar_t = t_vz_t; % vpar, unitless
63 t_vper_t = sqrt(t_vx_t.^2 + t_vy_t.^2); % vper, unitless
64

65 t_alpha_t = atan2(t_vper_t,-t_vpar_t);%*180/pi;
66 t_theta_t = 2*pi-atan2(t_vy_t,t_vx_t); % math to convert from atan2 output

range to standard
67 t_theta_t(t_theta_t>=2*pi) = t_theta_t(t_theta_t>=2*pi)-2*pi; % 0to2pi

clockwise from +x angle
68 %t_theta_t = t_theta_t * 180/pi;
69

70 t_X_b = r_hemiterp(7:9,:)*r0; % Distances in m
71

72 t_En_t = (t_vmag_t*v0).^2/eVconst; % Energy, eV
73 t_vmag_t_mps = t_vmag_t*v0*299792458; % convert to m/s
74 t_vpar_t_mps = t_vpar_t*v0*299792458;
75 t_vper_t_mps = t_vper_t*v0*299792458;
76

77 t_vx_b = -r_hemiterp(10,:);
78 t_vy_b = -r_hemiterp(11,:);
79 t_vz_b = -r_hemiterp(12,:);
80 t_vmag_b = sqrt(t_vx_b.^2 + t_vy_b.^2 + t_vz_b.^2); % v, unitless
81 t_vpar_b = t_vz_b; % vpar, unitless
82 t_vper_b = sqrt(t_vx_b.^2 + t_vy_b.^2); % vper, unitless
83

84 t_alpha_b = atan2(t_vper_b,-t_vpar_b);%*180/pi;
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85 t_theta_b = 2*pi-atan2(t_vy_b,t_vx_b); % math to convert from atan2 output
range to standard

86 t_theta_b(t_theta_b>=2*pi) = t_theta_b(t_theta_b>=2*pi)-2*pi; % 0to2pi
clockwise from +x angle

87 %t_theta_b = t_theta_b * 180/pi;
88

89 t_En_b = (t_vmag_t*v0).^2/eVconst; % Energy, eV
90 t_vmag_b_mps = t_vmag_b*v0*299792458; % convert to m/s
91 t_vpar_b_mps = t_vpar_b*v0*299792458;
92 t_vper_b_mps = t_vper_b*v0*299792458;
93

94 % 17xN full-results matrix
95 % (x,y,z, vmag, vpar, vper, pa, azi)_top
96 % (x,y,z, vmag, vpar, vper, pa, azi)_bottom
97 % time
98

99 %r_mirror_XVPA = [ ...
100 % t_X_t(1,:) ; t_X_t(2,:) ; t_X_t(3,:) ; ...
101 % t_vmag_t_mps ; t_vpar_t_mps ; t_vper_t_mps ; ...
102 % t_alpha_t ; t_theta_t ; ...
103 % t_X_b(1,:) ; t_X_b(2,:) ; t_X_b(3,:) ; ...
104 % t_vmag_b_mps ; t_vpar_b_mps ; t_vper_b_mps ; ...
105 % t_alpha_b ; t_theta_b ; ...
106 % r_hemiterp(13,:) ...
107 % ];
108

109 % Discard X (assume homogeneity), re-add Energies
110 % 13xN matrix
111 % (En, vmag, vpar, vper, pa, azi)_top
112 % (En, vmag, vpar, vper, pa, azi)_bottom
113 % time
114

115 r_mirror_EVPA = [ ...
116 t_En_t ; ...
117 t_vmag_t_mps ; t_vpar_t_mps ; t_vper_t_mps ; ...
118 t_alpha_t ; t_theta_t ; ...
119 t_En_b ; ...
120 t_vmag_b_mps ; t_vpar_b_mps ; t_vper_b_mps ; ...
121 t_alpha_b ; t_theta_b ; ...
122 r_hemiterp(13,:) ...
123 ];
124

125 % Build a map structure, to keep track of what's what.
126

127 smap_EVPA.top.En = 1;
128 smap_EVPA.top.v.mag = 2;
129 smap_EVPA.top.v.para = 3;
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130 smap_EVPA.top.v.perp = 4;
131 smap_EVPA.top.alpha = 5;
132 smap_EVPA.top.theta = 6;
133 smap_EVPA.bot.En = 7;
134 smap_EVPA.bot.v.mag = 8;
135 smap_EVPA.bot.v.para = 9;
136 smap_EVPA.bot.v.perp = 10;
137 smap_EVPA.bot.alpha = 11;
138 smap_EVPA.bot.theta = 12;
139 smap_EVPA.time = 13;

B.3 Distribution Building and Reduction,
Growth Rates

B.3.1 Maxwell-Boltzmann Distribution

Takes parameters, and arrays that tell it where its sample points in energy pitch-angle phase
space are, and builds a Maxwellian distribution.

maxwellian.m

1 function [ maxw_vel ] = maxwellian( temp, shift_eV, PAcenter, PAwidth,
in_velocities, in_angles)

2 %maxwellian(temp, PA center, PA width, input eneriges, input angles)
3 % Returns a discretely sampled, joint probability distribution
4 % function, based on the input parameters, sampled at the provided
5 % energies and angles. Temp in K, shift in eV, PA in degrees, leave
6 % PAcenter empty [] to use a flat pitch-angle distribution.
7

8 v_th = sqrt(3*temp*15156333.1); % Convert input temp. to
9 % v_th = (3kT/m)^(1/2)

10 eVconst = 3.913903e-6; % 2/(m_e*c^2) in eV^-1,
11 % i.e. conversion from eV to PSL
12 v0 = 0.00989179273; % velocity base in PSL is equivalent to 25 eV
13

14 shift = sqrt(shift_eV*eVconst)*299792458; % conv shift eV to m/s
15

16 % Maxwell-Boltzmann in velocity
17 % maxw_vel = (temp/pi)^(3/2) * 4*pi * (in_velocities).^2 .*

exp(-temp*(in_velocities-shift).^2);
18 maxw_exp = exp(-(in_velocities-shift).^2/(2*v_th^2));
19 maxw_vel = (2*pi)^(-3/2)*v_th^-3 .* maxw_exp;
20

21 if ~isempty(PAcenter)
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22 % Gaussian in pitch angle
23 maxw_PA = 1/(PAcenter*sqrt(2*pi)) *

exp(-(in_angles-PAwidth).^2/(2*PAcenter^2));
24 maxw_vel = maxw_vel.*maxw_PA;
25 end
26

27 end

B.3.2 Background/Beam Definition Structure Builder

This takes a launch period, sampling period, and structures that define the ionospheric
background, secondary background, and beams, and builds a parent structure encompassing
all of that. It performs a couple of simple sanity checks, and builds a vector with the start
times for each segment of the beam structure, as well as the ‘end’ time.

build_dyn_struct()

1 function s_dyn = build_dyn_struct( launch_dt, sample_dt, s_iono, s_bg,
s_beams )

2 %build_dyn_struct Builds a dynamic distribution definition structure.
3 % Builds a structure for feeding to dynamic_distribution().
4 % Beyond using struct(), the main function is to build the vector
5 % s_dyn.times, which has the start time of each beam, so you can do a
6 % simple find(s_dyn.times >= time & s_dyn.times < time) to figure out
7 % what beam def is active at a given time.
8

9 n_beams = length(s_beams);
10 v_times = zeros(n_beams+1,1);
11 for i=2:n_beams+1
12 v_times(i) = v_times(i-1) + s_beams{i-1}.dwell_time;
13 end
14

15 if sample_dt < 10*launch_dt
16 display('Sampling time should really be at least 10 times launch time!')
17 end
18

19 if ~isempty(find(diff(v_times) < launch_dt, 1))
20 display('Dwell time lower than launch time! Is this really what you

want?')
21 end
22

23 s_dyn = struct('launch_dt', launch_dt, 'sample_dt', sample_dt, ...
24 'iono', s_iono, 'bg', s_bg, 'times', v_times);
25 s_dyn.beams = s_beams;
26

27 end
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B.3.3 Dynamic Distribution Timeslice Calculator

Takes the a time, the input data from the test particle simulation and its map structure,
and a definition structure made by build_dyn_struct(), and returns the Maxwellian for the
given time.

dynamic_distribution.m

1 function [ dist, sdist, n_beam ] = dynamic_distribution(time, in_dist,
in_map, dist_def)

2 % Returns a distribution at a given time, for a provided 2xN list of
3 % particles/distribution function element centers, with velocities
4 % in (1,:) and pitch angles in (2,:). Returns an N-element list which
5 % is values of f(vmag,pa) for each particle.
6

7 in_vmag = in_dist(in_map.bot.v.mag,:);
8 in_PA = in_dist(in_map.bot.alpha,:);
9

10 % ionosphere parameters
11 iono_def = dist_def.iono;
12

13 % Create ionospheric distribution
14 iono_dist = maxwellian(iono_def.temp, iono_def.shift, ...
15 iono_def.PAcenter, iono_def.PAwidth, in_vmag, in_PA);
16 iono_part = iono_dist*iono_def.n;
17

18 % background parameters
19 bg_def = dist_def.bg;
20

21 % Create background distribution
22 bg_dist = maxwellian(bg_def.temp, bg_def.shift, ...
23 bg_def.PAcenter, bg_def.PAwidth, in_vmag, in_PA);
24 bg_part = bg_dist*bg_def.n;
25

26 % We'll be using segment time /. dwell_time
27 i_beam = find(dist_def.times <= time, 1, 'last');
28 beam_def = dist_def.beams{i_beam};
29 n_beam = beam_def.n;
30

31 if beam_def.n == 0 % BG-only case
32

33 dist = bg_part+iono_part;
34 sdist = { iono_part, bg_part, zeros(size(iono_part)) };
35

36 else % BG + beam
37

38 beam_dist = maxwellian(beam_def.temp, beam_def.shift, ...
39 beam_def.PAcenter, beam_def.PAwidth, in_vmag, in_PA);

196



40 beam_part = beam_dist*beam_def.n;
41

42 dist = iono_part+bg_part+beam_part;
43 sdist = { iono_part, bg_part, beam_part };
44

45 end
46

47 end

B.3.4 Azimuthal Summation

The first step of reduction is to undo all that hard work hemi_fill() did. In gyrotropic
cases the azimuthal angle has no effect on time of flight, so we can do this before we deal
with any time summation issues.

This function will be run many times, and the uniquetol() required to get the indices of
unique v⊥ and v∥ is quite slow. The result is also identical for a given set of input velocity
vectors, so we can save the result, and reuse it for every azi_sum() in a given run. This is
what azi_sum_stash(), with its friend array_checksum(), both included below, accomplish:
compare input vs. stored checksums, and if it checks out, just pass back saved results. Saves
and checksums are stored as persistent variables in the function-local context.

Finally, also included is a simple intermediate utility function time_azi_sum_chain(), which
chains dynamic_distribution() to azi_sum(), for great justice.

azi_sum.m

1 function [ m_fperppara, out_map, m_intersect, s_uniques ] = azi_sum(in_dist,
in_map, t_dalpha, t_domega)

2 % Takes a 14xN list of cells in a distribution in 3-D perp/para/azi
3 % space, and sums over Azimuthseseses to return a 12xM list of 2-D
4 % reduced distribution functions in v_perp-v_para space. Optionally
5 % returns its intersection list and a structure of the unique perp
6 % and para values.
7

8 % Input 14xN matrix
9 % (En, vmag, vpar, vper, pa, azi)_top

10 % (En, vmag, vpar, vper, pa, azi)_bottom
11 % time, distN
12

13 % Returns 12xM
14 % (En, vmag, vpar, vper, pa)_top
15 % (En, vmag, vpar, vper, pa)_bottom
16 % time, N
17

18 v_perp = in_dist(in_map.bot.v.perp,:);
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19 v_para = in_dist(in_map.bot.v.para,:);
20

21 % get cell of tuple-matches
22 [ m_intersect, s_uniques ] = azi_sum_stash(v_perp, v_para);
23 n_cells = length(m_intersect);
24

25 m_fperppara = zeros(12,n_cells);
26 for i=1:n_cells
27 v_indices = m_intersect{i};
28

29 v_distN = in_dist(in_map.dist,v_indices);
30

31 % Since these are limited to a single vperp,vpara, they all
32 % have the same alpha, i.e. they're in an azimuthal ring.
33 % Because that's exactly how azimuths were defined. Thus,
34 % dtheta is just 2pi/(# of points). We can just factor that.
35 t_dtheta = 2*pi/length(v_indices);
36 t_sumN = sum(v_distN*t_dtheta);
37

38 m_fperppara(:,i) = [ in_dist([ ...
39 in_map.top.En in_map.top.v.mag ...
40 in_map.top.v.perp in_map.top.v.para in_map.top.alpha ...
41 in_map.bot.En in_map.bot.v.mag ...
42 in_map.bot.v.perp in_map.bot.v.para in_map.bot.alpha ...
43 in_map.time],v_indices(1)) ; t_sumN ];
44 % The values from the input should be
45 % identical for all v_indices()
46

47 end
48

49 % create new output field map
50 out_map.top.En = 1; out_map.top.v.mag = 2;
51 out_map.top.v.perp = 3; out_map.top.v.para = 4;
52 out_map.top.alpha = 5;
53 out_map.bot.En = 6; out_map.bot.v.mag = 7;
54 out_map.bot.v.perp = 8; out_map.bot.v.para = 9;
55 out_map.bot.alpha = 10;
56 out_map.time = 11; out_map.dist = 12;
57

58 end

azi_sum_stash.m

1 function [ m_intersect, s_uniques ] = azi_sum_stash(v_perp,v_para)
2 % Finds unique (v_perp,v_para) tuples and returns the indices from the
3 % data that hit those tuples, i.e. a cell of arrays of data points with
4 % the same (v_perp,v_para), but different azimuths.
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5 % Will cache this search for inputs which match checksums, because the
6 % uniquetol()s and intersections are rather slow.
7

8 % uniquetol() and the set intersection stuff are very time
9 % consuming, so we'll cache those results and a checksum.

10 persistent perpcs paracs sm_intersect ss_uniques
11

12 % First check if we've got an accurate cache.
13 newperpcs = array_checksum(v_perp); % checksum of perp velocities
14 newparacs = array_checksum(v_para); % checksum of para velocities
15

16 if ~isequal(perpcs,newperpcs) || ~isequal(paracs,newparacs) ||
isempty(sm_intersect)

17 display('Rerunning uniquetol() & intersections.')
18 % no stored copy or checksums were bad, must run uniquetol()s
19

20 perpcs = newperpcs; % store checksums
21 paracs = newparacs;
22

23 [ v_vperpvals, v_vperpinds ] =
uniquetol(v_perp,0.000001,'OutputAllIndices',true);

24 [ v_vparavals, v_vparainds ] =
uniquetol(v_para,0.000001,'OutputAllIndices',true);

25

26 ss_uniques.v_vperpvals = v_vperpvals; ss_uniques.v_vperpinds =
v_vperpinds;

27 ss_uniques.v_vparavals = v_vparavals; ss_uniques.v_vparainds =
v_vparainds;

28

29 n_vperp = length(v_vperpvals);
30 n_vpara = length(v_vparavals);
31

32 % Make a grid for all possible (v_perp,v_para) tuples
33 m_intersect = cell(n_vperp,n_vpara);
34 m_interlen = zeros(n_vperp,n_vpara);
35 for i=1:n_vperp
36 parfor j=1:n_vpara
37

38 % v_indices = intersect(v_vperpinds{i},v_vparainds{j});
39 % using ismember() is faster, but still pretty slow
40 m_intersect{i,j} = v_vperpinds{i}(ismember(v_vperpinds{i},

v_vparainds{j}));
41 m_interlen(i,j) = length(m_intersect{i,j});
42

43 end
44 end
45
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46 % flatten
47 m_intersect = reshape(m_intersect,1,[]);
48 m_interlen = reshape(m_interlen,1,[]);
49

50 % keep only points with matching cells
51 m_intersect = m_intersect(m_interlen ~= 0);
52

53 sm_intersect = m_intersect;
54 end
55

56 s_uniques = ss_uniques;
57 m_intersect = sm_intersect;
58

59 end

array_checksum.m

1 function cs = array_checksum(in)
2

3 flatsum = sum(in);
4 cs = flatsum/sum((in/flatsum).^2);
5

6 end

time_azi_sum_chain.m

1 function [ m_EVPN, smap_EVPN ] = time_azi_sum_chain(in_time, in_dist,
in_map, dist_def)

2

3 t_dphi = 3*pi/256; % delta for co-latitude
4 t_domega = 0.001; % delta for solid angle in steradians
5

6 % generate dist at top-time t
7 t_dist = dynamic_distribution(in_time, in_dist, in_map, dist_def);
8 m_EVPAN = [ in_dist ; t_dist ]; % Tack distribution on to the rest
9 smap_EVPAN = in_map;

10 smap_EVPAN.dist = 14;
11

12 % azi_sum
13 [ m_EVPN, smap_EVPN ] = azi_sum(m_EVPAN, smap_EVPAN, t_dphi, t_domega);
14

15 end
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B.3.5 Perpendicular Summation

Now we sum over the perpendicular velocities, to get a parallel reduced distribution function.
This just straight up returns the RDF, no more structy stuff since we’re combining things.
I wonder how setting the bin centers arbitrarily might change things in the results...

perp_sum.m

1 function [ m_rdf, paravals ] = perp_sum(in_dist, in_map, paravals)
2 % Takes a 12xN distribution of cells in 2-D perp/para space,
3 % and sums over perp values to return a 10xM 1-D distribution.
4

5 % Input 12xM
6 % (En, vmag, vpar, vper, pa)_top
7 % (En, vmag, vpar, vper, pa)_bottom
8 % time, N
9

10 v_perp = in_dist(in_map.bot.v.perp,:);
11 v_para = in_dist(in_map.bot.v.para,:);
12 v_N = in_dist(in_map.dist,:);
13

14 n_para = length(paravals);
15

16 [ para_widths, para_deltas ] = half_deltas(paravals);
17

18 m_rdf = zeros(n_para,1);
19 parfor i=1:n_para
20 para = paravals(i);
21 deltas = para_deltas(i:i+1);
22

23 parainds = find(v_para >= para-deltas(1) & v_para < para+deltas(2));
24 [ t_perpvals, t_perpinds ] = uniquetol(v_perp(parainds), ...
25 0.00001, 'OutputAllIndices', true);
26 n_perp = length(t_perpvals);
27

28 if n_perp > 1
29 % flatten the lists, making a list of all vals,
30 % and a list of indices
31 perpvals = [];
32 for k=1:n_perp
33 perpvals = [ perpvals

repmat(t_perpvals(k),1,length(t_perpinds{k})) ];
34 end
35 perpinds = vertcat(t_perpinds{:});
36

37 [ s_perpvals, si_perpvals ] = sort(perpvals);
38

39 % indices within this batch of parainds
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40 si_perpinds = perpinds(si_perpvals);
41 % values of f(perp,para)
42 s_distN = v_N(parainds(si_perpinds));
43

44 % trapezoidal rule function,
45 % 1/2 sum( (v_{i+1}-v_i)*(f(v_{i+1})+f(v_i))*v_i )
46 delta_v = diff(s_perpvals);
47 f_sums = s_distN(1:end-1) + s_distN(2:end);
48 f = 0.5*sum( delta_v .* f_sums .* s_perpvals(1:end-1) );
49

50 elseif n_perp == 1
51 if length(t_perpinds) > 1
52 display('Only one perp value, but multiple indices. This

really shouldn''t happen!')
53 end
54 f = sum(v_N(parainds(t_perpinds{1})));
55

56 else
57 f = 0;
58

59 end
60

61 m_rdf(i) = f;
62 end
63

64 end % parper_rdf()

B.3.6 Growth Rate Utility Script

Aaand the remainder is done in another sectioned script. The memory usage of this gets
untenable for small timesteps: potentially hundreds of GB. Recoding it to not keep all data
(only that which affects the current detector timeslice or whatever) would help. Making it
cluster-deployable would be better, but that would take a good bit of work.

1 % Full distribution to growth rate code stack
2

3 %% Define the distribution
4

5 % Fiddle with topside distribution
6 fiddle = false;
7 if fiddle
8 % Find unique energies for fiddling
9 [ t_en, t_en_ind ] = uniquetol(r_mirror_EVPA(smap_EVPA.top.En,:), 0.001,

'outputallindices', true);
10
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11 % Remove half of the energies
12 t_en_find = vertcat( t_en_ind{1:2:end} );
13 GR_dist = r_mirror_EVPA(:,t_en_find);
14 else
15 GR_dist = r_mirror_EVPA;
16 end
17

18 GR_smap = smap_EVPA;
19

20 shortest_travel_time = min(GR_dist(GR_smap.time,:));
21 longest_travel_time = max(GR_dist(GR_smap.time,:));
22

23 density_const = 0.000314207783; % m_e*epsilon_0/e^2
24

25 % ionospheric background parameters
26 f_pe = 400000;
27 omega_pe = f_pe * 2*pi;
28 n_e = omega_pe^2*density_const;
29 iono_temperature = 2000; %in Kelvin
30

31 s_dyn_iono = struct('n', n_e, 'temp', iono_temperature, 'shift', 0, ...
32 'PAcenter', [], 'PAwidth', []);
33

34 % secondary background parameters
35 maxw_temperature = 200000; % in Kelvin
36 t_temp_eV = maxw_temperature/11604.505;
37 % linearly interpolate n(T) from Table 1b in Lotko & Maggs 1981
38 if t_temp_eV < 137.1
39 t_n_lotkomaggs = (0.44 - 0.83)/(137.1 - 62.4)*(t_temp_eV-62.4) + 0.83;
40 else
41 t_n_lotkomaggs = (0.42 - 0.44)/(220.1 - 137.1)*(t_temp_eV-137.1) + 0.44;
42 end
43 maxw_particles = t_n_lotkomaggs * 1000000; % cm^-3 -> m^-3
44 maxw_shift = 0;
45 maxw_PAcenter = [];
46 maxw_PAwidth = [];
47

48 s_dyn_bg = struct('n', maxw_particles, 'temp', maxw_temperature, 'shift',
maxw_shift, ...

49 'PAcenter', maxw_PAcenter, 'PAwidth', maxw_PAwidth);
50

51 % beam parameter sets
52 % run 4 longest travel time is <14s
53 s_dyn_beams = {
54 struct('n', 0, 'dwell_time', 5), ...
55 struct('n', maxw_particles/50, 'dwell_time', 0.100, 'temp',

maxw_temperature/5, 'shift', 400, 'PAcenter', [], 'PAwidth', []), ...
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56 ...% struct('n', maxw_particles/5, 'temp', maxw_temp/16, 'shift', 300,
'PAcenter', [], 'PAwidth', []), ...

57 struct('n', 0, 'dwell_time', 5)
58 };
59

60 % Builder function eats launch time, sample time,
61 % and the three dist structures.
62 s_dyn_dist = build_dyn_struct(0.001, 0.010, s_dyn_iono, s_dyn_bg,

s_dyn_beams);
63

64 %% Sanity-check plots
65

66 java_numFmt = java.text.DecimalFormat;
67

68 % sort by energy for plotting, but we feed
69 % dynamic_distribution velocities and PAs
70 [ s_En, si_En ] = sort(GR_dist(GR_smap.bot.En,:));
71

72 h = figure(7777);
73 clf(h)
74

75 set(h,'position',[ 10 500 300*n_beams 400]);
76 suptitle('Electron Distribution Functions')
77

78 n_beams = length(s_dyn_beams);
79 for i=1:n_beams
80

81 [ t_dist, s_dist ] = dynamic_distribution(s_dyn_dist.times(i), GR_dist,
GR_smap, s_dyn_dist);

82

83 t_width = 0.90/n_beams;
84 subplot('position',[ 0.05+t_width*(i-1) 0.17 t_width 0.70 ])
85

86 plot(s_En,t_dist(si_En),'k', s_En,s_dist{1}(si_En),'g.', ...
87 s_En,s_dist{2}(si_En),'b*', s_En,s_dist{3}(si_En),'rx');
88 set(gca,'fontsize',12)
89

90 xlabel('Energy [eV]')
91 foo = get(gca,'xticklabel'); foo{end}=''; set(gca,'xticklabel',foo);
92 if i==1
93 ylabel('$f(|v|)$','interpreter','latex');
94 t_xlim = xlim; t_ylim = ylim;
95 else
96 set(gca,'yticklabel',[])
97 xlim(t_xlim); ylim(t_ylim);
98 end
99
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100 if s_dyn_dist.beams{i}.n == 0
101 legend('Combined', [ char(java_numFmt.format(s_dyn_dist.iono.temp))

' K ionospheric BG' ], ...
102 [ char(java_numFmt.format(s_dyn_dist.bg.temp)) ' K secondary BG'

])
103 else
104 legend('Combined', [ char(java_numFmt.format(s_dyn_dist.iono.temp))

' K ionospheric BG' ], ...
105 [ char(java_numFmt.format(s_dyn_dist.bg.temp)) ' K secondary BG'

], ...
106 [ char(java_numFmt.format(s_dyn_dist.beams{i}.temp)) ' K, ' ...
107 char(java_numFmt.format(s_dyn_dist.beams{i}.shift)) '

eV-shifted beam'])
108 end
109 end
110

111 %print('-dpng',[file_outdir '\topdist.png'])
112

113 %% azi_sum all top timesteps
114 launch_time = s_dyn_dist.launch_dt;
115 n_beams = length(s_dyn_dist.beams);
116

117 tic
118 dt_c_EVPN = cell(n_launchsteps,2);
119

120 v_launchsteps = 0:launch_time:s_dyn_dist.times(end)-launch_time;
121 n_launchsteps = length(v_launchsteps);
122

123 for i=1:n_launchsteps
124 t_time = v_launchsteps(i);
125

126 [ m_EVPN, smap_EVPN ] = time_azi_sum_chain (t_time, GR_dist, GR_smap,
s_dyn_dist);

127

128 t_strike = m_EVPN(smap_EVPN.time, :) + t_time;
129

130 dt_c_EVPN{i,1} = m_EVPN;
131 dt_c_EVPN{i,2} = t_strike;
132

133 end
134

135 dt_m_EVPN = [dt_c_EVPN{:,1}];
136 dt_v_EVPNt = [dt_c_EVPN{:,2}];
137 toc
138

139 %% Set up for perp_sum
140 % Now we go through and filter, for bottom time t-deltat to t
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141

142 sample_time = s_dyn_dist.sample_dt;
143 v_timesteps = shortest_travel_time:sample_time:(n_beams*t_dwell)-launch_time;
144 n_timesteps = length(v_timesteps);
145

146 % Find the field-aligned velocities, for use as the
147 % center points in the reduced distribution function.
148 display('Uniquetol...')
149 v_paravels = uniquetol(dt_m_EVPN(smap_EVPN.bot.v.para,

dt_m_EVPN(smap_EVPN.bot.v.perp,:)==0));
150 display('...done.')
151

152 % Reverse to smallest magnitude first
153 v_paravels = sortmag(v_paravels);
154

155 % extend these to zero
156 n_para = length(v_paravels);
157 d_vpar = median(diff(v_paravels));
158 d_extrap = v_paravels(1):-d_vpar:0;
159

160 v_paravelx = [ flip(d_extrap(2:end)) v_paravels ];
161 n_paravelx = length(v_paravelx);
162

163 %% perp_sum all top timesteps
164

165 display('Running perp_sum()s...')
166 tic
167 dt_m_rdf = zeros(n_timesteps,n_paravelx);
168 dt_v_nrdf = zeros(n_timesteps,1);
169 for i=1:n_timesteps
170

171 t_time = v_timesteps(i);
172 % search for particles that have been 'detected' in this timeslice
173 v_timeinds = find(dt_v_EVPNt <= t_time & dt_v_EVPNt >

t_time-sample_time);
174 m_particles = dt_m_EVPN(:,v_timeinds);
175 dt_v_nrdf(i) = size(m_particles,2);
176 m_particles(smap_EVPN.dist,:) = m_particles(smap_EVPN.dist,:) *

launch_time/sample_time;
177

178 if length(m_particles) < 1
179 continue
180 end
181

182 % display(['Time ' num2str(t_time) ' found ' num2str(length(m_particles))
' particles.'])

183
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184 % reduce to parallel
185 dt_m_rdf(i,:) = perp_sum(m_particles, smap_EVPN, v_paravelx);
186

187 % growth rate
188 % v_gRate = para_gRate(m_rdf);
189

190 end
191 toc
192

193 %%
194

195 for i=490:800 %1:n_timesteps
196

197 t_time = v_timesteps(i);
198 % search for particles that have been 'detected' in this timeslice
199 [ t_time t_time-sample_time ]
200 v_timeinds = find(dt_v_EVPNt <= t_time & dt_v_EVPNt >

t_time-sample_time);
201 length(v_timeinds)
202 end
203

204 %% Full gamma vs k & time plot
205

206 t_temp = s_dyn_dist.beams{2}.temp;
207 t_shift = s_dyn_dist.beams{2}.shift;
208 t_bg = 2000; % background ionospheric cold electron temperature [K]
209 v_bg = sqrt(3*t_bg*15156333.1);
210

211 f_pe = 400000; % 500 kHz plasma freq.
212 omega_pe = f_pe * 2*pi;
213 t_test_temp = t_shift + t_temp/11604; % approximate beam speed
214 t_test_vel = eV2mps(t_test_temp);
215 [ ~, i_test ] = min(abs(-v_paravelx-t_test_vel))
216 v_omega_test = (1.00001:0.00001:1.01)*omega_pe;
217 v_k_test = sqrt(2/3*(v_omega_test-omega_pe)*omega_pe/v_bg^2);
218 %v_k_test = logspace(-6,20,1000);
219 v_k_test = 0.1:0.001:0.5;
220 v_omega_test = v_k_test.^2*3/2*v_bg^2/omega_pe + omega_pe;
221 n_test = length(v_k_test)
222

223 m_gamma = zeros(n_timesteps,n_test); % timestep,kind,val/omegaind
224 m_vtest = zeros(n_timesteps,n_test,2);
225 m_kmag2 = zeros(n_timesteps,n_test,1);
226 m_df1 = zeros(n_timesteps,n_test,1);
227 m_omega_test = zeros(n_timesteps,n_test,1);
228 m_n_e = zeros(n_timesteps,n_test,1);
229
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230 parfor i=1:n_timesteps
231 for j=1:n_test
232 t_kpara = v_k_test(j);
233 % t_omega_test = v_omega_test(j);
234

235 [ m_gamma(i,j), m_vtest(i,j,:), m_kmag2(i,j), m_df1(i,j),
m_omega_test(i,j), m_n_e(i,j) ] = growth_rate(dt_m_rdf(i,:),
-v_paravelx, [ t_kpara 0 ], omega_pe, v_bg, t_test_vel);

236

237 end
238 end
239

240 %% Launch timestep n summation, for 'this is where the beam was' plot.
241

242 dt_v_fbg = zeros(n_launchsteps,1);
243 dt_v_fbeam = zeros(n_launchsteps,1);
244 parfor i=1:n_launchsteps
245 t_time = v_launchsteps(i);
246

247 [ ~, s_dist ] = dynamic_distribution(t_time, GR_dist, GR_smap,
s_dyn_dist);

248

249 dt_v_fbg(i) = sum(s_dist{1}) + sum(s_dist{2});
250 dt_v_fbeam(i) = sum(s_dist{3});
251 end
252

253

254 %% r/b gamma vs k,time plot
255

256 t_azi = 0;
257 t_el = 0;
258

259 v_upsteps = find(v_timesteps > 7.2 & v_timesteps < 8);
260 v_dnsteps = find(v_timesteps >= 6 & v_timesteps < 12);
261

262 %v_upsteps = find(v_timesteps);
263 %v_dnsteps = find(v_timesteps);
264

265 h = figure(7805);
266 clf
267 set(h, 'position', [100 50 1200 900])
268

269 p_plbase = 0.08;
270 p_plleft = 0.08;
271 p_plwidt = 0.40;
272 p_lpheig = 0.10;
273 p_vspace = 0.03;
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274 p_spheig = 0.32;
275 p_hspace = 0.04;
276

277 hT = suptitle([ 'Growth Rates, $\Delta t_S =' num2str(launch_time) '$ s,
$\Delta t_D =' num2str(sample_time) '$ s' ]);

278 set(hT,'interpreter','latex');
279

280 % -- n vs t --
281

282 nax = subplot('Position',[ ...
283 p_plleft ...
284 p_plbase+2*p_spheig+p_vspace ...
285 2*p_plwidt+p_hspace ...
286 p_lpheig ...
287 ]); ax = [ ax nax ];
288 plot(v_launchsteps,dt_v_fbeam./dt_v_fbg)
289 xlabel('Time [s]'); set(gca, 'fontsize', 12); grid on; ylim([-0.25 0.75]);

set(gca,'ytick',[0 0.2 0.4 0.6])
290 set(gca,'XAxisLocation','top');

ylabel('$n_{beam}/n_{bg}$','interpreter','latex')
291 set(gca,'xtick',1:15)
292

293 % -- gamma vs t --
294

295 ax = [];
296 nax = subplot('Position',[ ...
297 p_plleft ...
298 p_plbase+p_spheig ...
299 p_plwidt ...
300 p_spheig ...
301 ]); ax = [ ax nax ];
302 surf(v_timesteps(v_upsteps), v_k_test, m_gamma(v_upsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
303 %caxis([-t_crange t_crange])
304 view(0,0); %set(gca,'zscale', 'log'); % ylim([min(v_k_test) 0.5])
305 %zlim([-10e3 10e3])
306 set(gca, 'fontsize', 12, 'xticklabel', []); ylabel('k'); zlabel('\gamma');
307 t_tick = get(gca,'ztick'); t_tick = t_tick(2:end); set(gca, 'ztick',t_tick);
308

309 nax = subplot('Position',[ ...
310 p_plleft+p_hspace+p_plwidt ...
311 p_plbase+p_spheig ...
312 p_plwidt ...
313 p_spheig ...
314 ]); ax = [ ax nax ];
315 surf(v_timesteps(v_dnsteps), v_k_test, m_gamma(v_dnsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
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316 t_crange = max([caxis(ax(1)) caxis(ax(2))]);
317 caxis(ax(1),[-t_crange t_crange]); caxis(ax(2),[-t_crange t_crange])
318 view(0,0); set(gca, 'ydir', 'reverse'); %set(gca, 'zscale', 'log');%

ylim([min(v_k_test) 0.5])
319 zlim([-10e3 10e3])
320 set(gca, 'fontsize', 12, 'xticklabel', []); %ylabel('k'); zlabel('\gamma');
321 t_tick = get(gca,'ztick'); t_tick = t_tick(2:end); set(gca, 'ztick',t_tick);
322

323 % -- k vs t --
324

325 nax = subplot('Position',[ ...
326 p_plleft ...
327 p_plbase ...
328 p_plwidt ...
329 p_spheig ...
330 ]); ax = [ ax nax ];
331 surf(v_timesteps(v_upsteps), v_k_test, m_gamma(v_upsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
332 %caxis([-t_crange t_crange])
333 view(0,90); ylim([min(v_k_test) 0.5])
334 %ylim([0 3e-3])
335 set(gca, 'fontsize', 12,'xtick',get(ax(1),'xtick'))
336 ylabel('k');
337 t_tick = get(gca,'yticklabel'); t_tick{end}=''; set(gca,

'yticklabel',t_tick);
338 xlabel('Time [s]');
339

340 nax = subplot('Position',[ ...
341 p_plleft+p_hspace+p_plwidt ...
342 p_plbase ...
343 p_plwidt ...
344 p_spheig ...
345 ]); ax = [ ax nax ];
346 surf(v_timesteps(v_dnsteps), v_k_test, m_gamma(v_dnsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
347 t_crange = max([caxis(ax(3)) caxis(ax(4))]);
348 caxis(ax(3),[-t_crange t_crange])
349 caxis(ax(4),[-t_crange t_crange])
350 view(0,-90); set(gca, 'ydir', 'reverse'); ylim([min(v_k_test) 0.5])
351 %ylim([0 3e-3])
352 set(gca, 'fontsize', 12); %ylabel('k')
353 t_tick = get(gca,'yticklabel'); t_tick{end}=''; set(gca,

'yticklabel',t_tick);
354 xlabel('Time [s]');
355

356 foo = annotation('line',[0.08 0.473],[0.72 0.749]);
357 set(foo,'color','red')
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358 uistack(foo,'bottom')
359 foo = annotation('line',[0.48 0.528],[0.72 0.749]);
360 set(foo,'color','red')
361 uistack(foo,'bottom')
362

363 foo = annotation('line',[0.521 0.752],[0.72 0.749]);
364 set(foo,'color','red');
365 uistack(foo,'bottom')
366 foo = annotation('line',[0.92 0.808],[0.72 0.749]);
367 set(foo,'color','red');
368 uistack(foo,'bottom')
369

370 foo = annotation('textbox',[0.45 0.325 0.1 0.1], ...
371 'string', '...', 'horizontalalignment', 'center', 'linestyle',

'none','fontsize', 16, 'fontweight', 'bold');
372

373 % print looks awful, use manual export
374 %print('-opengl','-dpng', [file_outdir '\gr.png'])
375

376 %% r/b gamma vs k,time plot, single zoom
377

378 t_azi = 0;
379 t_el = 0;
380

381 v_steps = find(v_timesteps > 7.2 & v_timesteps < 8);
382

383 h = figure(7805);
384 clf
385 set(h, 'position', [100 50 1200 900])
386

387 p_plbase = 0.08;
388 p_plleft = 0.08;
389 p_plwidt = 0.84;
390 p_lpheig = 0.10;
391 p_vspace = 0.03;
392 p_spheig = 0.32;
393

394 hT = suptitle([ 'Growth Rates, $\Delta t_S =' num2str(launch_time) '$ s,
$\Delta t_D =' num2str(sample_time) '$ s, 100 ms Beam' ]);

395 set(hT,'interpreter','latex');
396

397 % -- n vs t --
398

399 nax = subplot('Position',[ ...
400 p_plleft ...
401 p_plbase+2*p_spheig+p_vspace ...
402 p_plwidt ...
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403 p_lpheig ...
404 ]); ax = [ ax nax ];
405 plot(v_launchsteps,dt_v_fbeam./dt_v_fbg)
406 xlabel('Time [s]'); set(gca, 'fontsize', 12); grid on; ylim([-0.25 0.75]);

set(gca,'ytick',[0 0.2 0.4 0.6])
407 set(gca,'XAxisLocation','top');

ylabel('$n_{beam}/n_{bg}$','interpreter','latex')
408 set(gca,'xtick',[ 1:7 8:10]); xlim(v_launchsteps([1 end]));
409

410 % -- gamma vs t --
411

412 ax = [];
413 nax = subplot('Position',[ ...
414 p_plleft ...
415 p_plbase+p_spheig ...
416 p_plwidt ...
417 p_spheig ...
418 ]); ax = [ ax nax ];
419 surf(v_timesteps(v_upsteps), v_k_test, m_gamma(v_upsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
420 t_crange = max([abs(caxis(ax(1)))]);
421 caxis([-t_crange t_crange])
422 view(0,0); %set(gca,'zscale', 'log'); % ylim([min(v_k_test) 0.5])
423 %zlim([-10e3 10e3])
424 set(gca, 'fontsize', 12, 'xticklabel', []); ylabel('k'); zlabel('\gamma');
425 t_tick = get(gca,'ztick'); t_tick = t_tick(2:end); set(gca, 'ztick',t_tick);
426

427 % -- k vs t --
428

429 nax = subplot('Position',[ ...
430 p_plleft ...
431 p_plbase ...
432 p_plwidt ...
433 p_spheig ...
434 ]); ax = [ ax nax ];
435 surf(v_timesteps(v_upsteps), v_k_test, m_gamma(v_upsteps,:).', 'edgecolor',

'none'); colormap(rwbmap); box on; set(gca, 'layer', 'top')
436 %t_crange = max([abs(caxis(ax(2)))]);
437 caxis([-t_crange t_crange])
438 view(0,90); ylim([min(v_k_test) 0.5])
439 %ylim([0 3e-3])
440 set(gca, 'fontsize', 12,'xtick',get(ax(1),'xtick'))
441 ylabel('k');
442 t_tick = get(gca,'yticklabel'); t_tick{end}=''; set(gca,

'yticklabel',t_tick);
443 xlabel('Time [s]');
444
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445 foo = annotation('line',[0.08 0.6805],[0.72 0.749]);
446 set(foo,'color','red')
447 uistack(foo,'bottom')
448 foo = annotation('line',[0.92 0.745],[0.72 0.749]);
449 set(foo,'color','red')
450 uistack(foo,'bottom')
451

452 foo = annotation('textbox',[0.45 0.325 0.1 0.1], ...
453 'string', '...', 'horizontalalignment', 'center', 'linestyle',

'none','fontsize', 16, 'fontweight', 'bold');
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